These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1815832)

  • 1. Effects of pHi and pHe on membrane currents recorded with the perforated-patch method from cultured chemoreceptors of the rat carotid body.
    Stea A; Alexander SA; Nurse CA
    Brain Res; 1991 Dec; 567(1):83-90. PubMed ID: 1815832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.
    Tan ZY; Lu Y; Whiteis CA; Benson CJ; Chapleau MW; Abboud FM
    Circ Res; 2007 Nov; 101(10):1009-19. PubMed ID: 17872465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chemosensory stimulation membrane currents recorded with the perforated-patch method from cultured rat glomus cells.
    Stea A; Alexander SA; Nurse CA
    Adv Exp Med Biol; 1993; 337():227-33. PubMed ID: 8109405
    [No Abstract]   [Full Text] [Related]  

  • 4. Contrasting effects of HEPES vs HCO3(-)-buffered media on whole-cell currents in cultured chemoreceptors of the rat carotid body.
    Stea A; Nurse CA
    Neurosci Lett; 1991 Nov; 132(2):239-42. PubMed ID: 1784426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH regulation in adult rat carotid body glomus cells. Importance of extracellular pH, sodium, and potassium.
    Wilding TJ; Cheng B; Roos A
    J Gen Physiol; 1992 Oct; 100(4):593-608. PubMed ID: 1294152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-cell and perforated-patch recordings from O2-sensitive rat carotid body cells grown in short- and long-term culture.
    Stea A; Nurse CA
    Pflugers Arch; 1991 Mar; 418(1-2):93-101. PubMed ID: 2041730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between changes of glomus cell current and neural response of rat carotid body.
    Cheng PM; Donnelly DF
    J Neurophysiol; 1995 Nov; 74(5):2077-86. PubMed ID: 8592198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH regulation of voltage-dependent K+ channels in canine pulmonary arterial smooth muscle cells.
    Ahn DS; Hume JR
    Pflugers Arch; 1997 Apr; 433(6):758-65. PubMed ID: 9049167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O2-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction.
    Wyatt CN; Wright C; Bee D; Peers C
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):295-9. PubMed ID: 7529413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Ca(2+)-activated K+ currents by intracellular acidosis in isolated type I cells of the neonatal rat carotid body.
    Peers C; Green FK
    J Physiol; 1991 Jun; 437():589-602. PubMed ID: 1890651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal development of E-4031-sensitive potassium current in rat carotid chemoreceptor cells.
    Kim I; Boyle KM; Carroll JL
    J Appl Physiol (1985); 2005 Apr; 98(4):1469-77. PubMed ID: 15591286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Na+/H+ exchange stimulates CCK secretion in STC-1 cells.
    Prpic V; Fitz JG; Wang Y; Raymond JR; Garnovskaya MN; Liddle RA
    Am J Physiol; 1998 Oct; 275(4):G689-95. PubMed ID: 9756498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HERG-Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body.
    Overholt JL; Ficker E; Yang T; Shams H; Bright GR; Prabhakar NR
    J Neurophysiol; 2000 Mar; 83(3):1150-7. PubMed ID: 10712445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-dependent potassium channels in activated rat microglia.
    Nörenberg W; Gebicke-Haerter PJ; Illes P
    J Physiol; 1994 Feb; 475(1):15-32. PubMed ID: 7514664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium currents recorded in type I carotid body cells from the neonatal rat and their modulation by chemoexcitatory agents.
    Peers C; O'Donnell J
    Brain Res; 1990 Jul; 522(2):259-66. PubMed ID: 2224527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hypoxia on intracellular pH of glomus cells cultured from cat and rat carotid bodies.
    Mokashi A; Ray D; Botre F; Katayama M; Osanai S; Lahiri S
    J Appl Physiol (1985); 1995 May; 78(5):1875-81. PubMed ID: 7649925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat.
    Buckler KJ; Vaughan-Jones RD; Peers C; Nye PC
    J Physiol; 1991 May; 436():107-29. PubMed ID: 2061827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of intracellular pH and thermosensitivity.
    Lyons JC; Kim GE; Song CW
    Radiat Res; 1992 Jan; 129(1):79-87. PubMed ID: 1728060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pH-sensitive chloride current in the chemoreceptor cell of rat carotid body.
    Petheo GL; Molnár Z; Róka A; Makara JK; Spät A
    J Physiol; 2001 Aug; 535(Pt 1):95-106. PubMed ID: 11507160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of doxapram on ionic currents recorded in isolated type I cells of the neonatal rat carotid body.
    Peers C
    Brain Res; 1991 Dec; 568(1-2):116-22. PubMed ID: 1667613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.