These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
458 related articles for article (PubMed ID: 18158321)
1. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. Wolf AJ; Desvignes L; Linas B; Banaiee N; Tamura T; Takatsu K; Ernst JD J Exp Med; 2008 Jan; 205(1):105-15. PubMed ID: 18158321 [TBL] [Abstract][Full Text] [Related]
2. Suboptimal Antigen Presentation Contributes to Virulence of Mycobacterium tuberculosis In Vivo. Grace PS; Ernst JD J Immunol; 2016 Jan; 196(1):357-64. PubMed ID: 26573837 [TBL] [Abstract][Full Text] [Related]
3. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. Blomgran R; Ernst JD J Immunol; 2011 Jun; 186(12):7110-9. PubMed ID: 21555529 [TBL] [Abstract][Full Text] [Related]
4. Role of the CD137 ligand (CD137L) signaling pathway during Mycobacterium tuberculosis infection. Martínez Gómez JM; Koh VH; Yan B; Lin W; Ang ML; Rahim SZ; Pethe K; Schwarz H; Alonso S Immunobiology; 2014 Jan; 219(1):78-86. PubMed ID: 24091276 [TBL] [Abstract][Full Text] [Related]
5. The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1 immune response in mice. Palma C; Iona E; Giannoni F; Pardini M; Brunori L; Orefici G; Fattorini L; Cassone A Cell Microbiol; 2007 Jun; 9(6):1455-65. PubMed ID: 17250590 [TBL] [Abstract][Full Text] [Related]
6. Ectopic activation of Mycobacterium tuberculosis-specific CD4+ T cells in lungs of CCR7-/- mice. Olmos S; Stukes S; Ernst JD J Immunol; 2010 Jan; 184(2):895-901. PubMed ID: 20007536 [TBL] [Abstract][Full Text] [Related]
7. Suppressed induction of mycobacterial antigen-specific Th1-type CD4+ T cells in the lung after pulmonary mycobacterial infection. Yahagi A; Umemura M; Tamura T; Kariyone A; Begum MD; Kawakami K; Okamoto Y; Hamada S; Oshiro K; Kohama H; Arakawa T; Ohara N; Takatsu K; Matsuzaki G Int Immunol; 2010 Apr; 22(4):307-18. PubMed ID: 20167585 [TBL] [Abstract][Full Text] [Related]
8. ESAT-6-specific CD4 T cell responses to aerosol Mycobacterium tuberculosis infection are initiated in the mediastinal lymph nodes. Reiley WW; Calayag MD; Wittmer ST; Huntington JL; Pearl JE; Fountain JJ; Martino CA; Roberts AD; Cooper AM; Winslow GM; Woodland DL Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10961-6. PubMed ID: 18667699 [TBL] [Abstract][Full Text] [Related]
9. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. Wolf AJ; Linas B; Trevejo-Nuñez GJ; Kincaid E; Tamura T; Takatsu K; Ernst JD J Immunol; 2007 Aug; 179(4):2509-19. PubMed ID: 17675513 [TBL] [Abstract][Full Text] [Related]
10. Modulation of naive CD4+ T-cell responses to an airway antigen during pulmonary mycobacterial infection. Anis MM; Fulton SA; Reba SM; Harding CV; Boom WH Infect Immun; 2007 May; 75(5):2260-8. PubMed ID: 17296758 [TBL] [Abstract][Full Text] [Related]
11. Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of M. tuberculosis in vivo. Bold TD; Banaei N; Wolf AJ; Ernst JD PLoS Pathog; 2011 May; 7(5):e1002063. PubMed ID: 21637811 [TBL] [Abstract][Full Text] [Related]
12. Persistence and turnover of antigen-specific CD4 T cells during chronic tuberculosis infection in the mouse. Winslow GM; Roberts AD; Blackman MA; Woodland DL J Immunol; 2003 Feb; 170(4):2046-52. PubMed ID: 12574375 [TBL] [Abstract][Full Text] [Related]
13. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming. Srivastava S; Ernst JD Cell Host Microbe; 2014 Jun; 15(6):741-52. PubMed ID: 24922576 [TBL] [Abstract][Full Text] [Related]
14. [A study of the protective effect of the DNA vaccine encoding tubercle antigen 85B with MPT64 in mice challenged with Mycobacterium tuberculosis]. Luo XD; Zhu DY; Chen Q; Jiang Y; Jiang S; Yang C Zhonghua Jie He He Hu Xi Za Zhi; 2004 Sep; 27(9):611-6. PubMed ID: 15498274 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Ballester M; Nembrini C; Dhar N; de Titta A; de Piano C; Pasquier M; Simeoni E; van der Vlies AJ; McKinney JD; Hubbell JA; Swartz MA Vaccine; 2011 Sep; 29(40):6959-66. PubMed ID: 21787826 [TBL] [Abstract][Full Text] [Related]
16. TLR2-targeted secreted proteins from Mycobacterium tuberculosis are protective as powdered pulmonary vaccines. Tyne AS; Chan JG; Shanahan ER; Atmosukarto I; Chan HK; Britton WJ; West NP Vaccine; 2013 Sep; 31(40):4322-9. PubMed ID: 23880366 [TBL] [Abstract][Full Text] [Related]
17. Role and contribution of pulmonary CD103 Koh VH; Ng SL; Ang ML; Lin W; Ruedl C; Alonso S Tuberculosis (Edinb); 2017 Jan; 102():34-46. PubMed ID: 28061951 [TBL] [Abstract][Full Text] [Related]
18. Immunogenicity and protective efficacy of a fusion protein vaccine consisting of antigen Ag85B and HspX against Mycobacterium tuberculosis infection in mice. Li Q; Yu H; Zhang Y; Wang B; Jiang W; Da Z; Xian Q; Wang Y; Liu X; Zhu B Scand J Immunol; 2011 Jun; 73(6):568-76. PubMed ID: 21323695 [TBL] [Abstract][Full Text] [Related]
20. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection. Yuan X; Teng X; Jing Y; Ma J; Tian M; Yu Q; Zhou L; Wang R; Wang W; Li L; Fan X Appl Microbiol Biotechnol; 2015 Dec; 99(24):10587-95. PubMed ID: 26363555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]