These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 18158323)
1. Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer. Cusimano N; Zhang LB; Renner SS Mol Biol Evol; 2008 Feb; 25(2):265-76. PubMed ID: 18158323 [TBL] [Abstract][Full Text] [Related]
2. Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family. Cho Y; Palmer JD Mol Biol Evol; 1999 Sep; 16(9):1155-65. PubMed ID: 10486971 [TBL] [Abstract][Full Text] [Related]
3. Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria. Sanchez-Puerta MV; Cho Y; Mower JP; Alverson AJ; Palmer JD Mol Biol Evol; 2008 Aug; 25(8):1762-77. PubMed ID: 18524785 [TBL] [Abstract][Full Text] [Related]
4. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. Löhne C; Borsch T Mol Biol Evol; 2005 Feb; 22(2):317-32. PubMed ID: 15496557 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial group II introns in the raphidophycean flagellate Chattonella spp. suggest a diatom-to-Chattonella lateral group II intron transfer. Kamikawa R; Masuda I; Demura M; Oyama K; Yoshimatsu S; Kawachi M; Sako Y Protist; 2009 Aug; 160(3):364-75. PubMed ID: 19346162 [TBL] [Abstract][Full Text] [Related]
6. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. Leebens-Mack J; Raubeson LA; Cui L; Kuehl JV; Fourcade MH; Chumley TW; Boore JL; Jansen RK; depamphilis CW Mol Biol Evol; 2005 Oct; 22(10):1948-63. PubMed ID: 15944438 [TBL] [Abstract][Full Text] [Related]
7. Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons. Sanchez-Puerta MV; Abbona CC; Zhuo S; Tepe EJ; Bohs L; Olmstead RG; Palmer JD BMC Evol Biol; 2011 Sep; 11():277. PubMed ID: 21943226 [TBL] [Abstract][Full Text] [Related]
8. Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Groth-Malonek M; Pruchner D; Grewe F; Knoop V Mol Biol Evol; 2005 Jan; 22(1):117-25. PubMed ID: 15356283 [TBL] [Abstract][Full Text] [Related]
9. The mitochondrial apocytochrome b genes of two Agrocybe species suggest lateral transfers of group I homing introns among phylogenetically distant fungi. Mouhamadou B; Férandon C; Barroso G; Labarère J Fungal Genet Biol; 2006 Mar; 43(3):135-45. PubMed ID: 16504553 [TBL] [Abstract][Full Text] [Related]
10. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Oxelman B; Yoshikawa N; McConaughy BL; Luo J; Denton AL; Hall BD Mol Phylogenet Evol; 2004 Aug; 32(2):462-79. PubMed ID: 15223030 [TBL] [Abstract][Full Text] [Related]
11. Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms. Seif E; Leigh J; Liu Y; Roewer I; Forget L; Lang BF Nucleic Acids Res; 2005; 33(2):734-44. PubMed ID: 15689432 [TBL] [Abstract][Full Text] [Related]
12. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms. Müller KF; Borsch T; Hilu KW Mol Phylogenet Evol; 2006 Oct; 41(1):99-117. PubMed ID: 16904914 [TBL] [Abstract][Full Text] [Related]
13. Explosive invasion of plant mitochondria by a group I intron. Cho Y; Qiu YL; Kuhlman P; Palmer JD Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14244-9. PubMed ID: 9826685 [TBL] [Abstract][Full Text] [Related]
14. Evolution of Piperales--matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Wanke S; Jaramillo MA; Borsch T; Samain MS; Quandt D; Neinhuis C Mol Phylogenet Evol; 2007 Feb; 42(2):477-97. PubMed ID: 16978885 [TBL] [Abstract][Full Text] [Related]
15. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Gugerli F; Sperisen C; Büchler U; Brunner I; Brodbeck S; Palmer JD; Qiu YL Mol Phylogenet Evol; 2001 Nov; 21(2):167-75. PubMed ID: 11697913 [TBL] [Abstract][Full Text] [Related]
16. Phylogenetic signal in matK vs. trnK: a case study in early diverging eudicots (angiosperms). Hilu KW; Black C; Diouf D; Burleigh JG Mol Phylogenet Evol; 2008 Sep; 48(3):1120-30. PubMed ID: 18603450 [TBL] [Abstract][Full Text] [Related]
17. Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails. Wikström N; Pryer KM Mol Phylogenet Evol; 2005 Sep; 36(3):484-93. PubMed ID: 15922630 [TBL] [Abstract][Full Text] [Related]
18. Introduction of a nuclear marker for phylogenetic analysis of Nepenthaceae. Meimberg H; Heubl G Plant Biol (Stuttg); 2006 Nov; 8(6):831-40. PubMed ID: 17203435 [TBL] [Abstract][Full Text] [Related]
19. Duplicate genes and the root of angiosperms, with an example using phytochrome sequences. Donoghue MJ; Mathews S Mol Phylogenet Evol; 1998 Jun; 9(3):489-500. PubMed ID: 9667997 [TBL] [Abstract][Full Text] [Related]
20. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Magallón S Syst Biol; 2010 Jul; 59(4):384-99. PubMed ID: 20538759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]