BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 18158323)

  • 1. Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer.
    Cusimano N; Zhang LB; Renner SS
    Mol Biol Evol; 2008 Feb; 25(2):265-76. PubMed ID: 18158323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family.
    Cho Y; Palmer JD
    Mol Biol Evol; 1999 Sep; 16(9):1155-65. PubMed ID: 10486971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria.
    Sanchez-Puerta MV; Cho Y; Mower JP; Alverson AJ; Palmer JD
    Mol Biol Evol; 2008 Aug; 25(8):1762-77. PubMed ID: 18524785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms.
    Löhne C; Borsch T
    Mol Biol Evol; 2005 Feb; 22(2):317-32. PubMed ID: 15496557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial group II introns in the raphidophycean flagellate Chattonella spp. suggest a diatom-to-Chattonella lateral group II intron transfer.
    Kamikawa R; Masuda I; Demura M; Oyama K; Yoshimatsu S; Kawachi M; Sako Y
    Protist; 2009 Aug; 160(3):364-75. PubMed ID: 19346162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone.
    Leebens-Mack J; Raubeson LA; Cui L; Kuehl JV; Fourcade MH; Chumley TW; Boore JL; Jansen RK; depamphilis CW
    Mol Biol Evol; 2005 Oct; 22(10):1948-63. PubMed ID: 15944438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons.
    Sanchez-Puerta MV; Abbona CC; Zhuo S; Tepe EJ; Bohs L; Olmstead RG; Palmer JD
    BMC Evol Biol; 2011 Sep; 11():277. PubMed ID: 21943226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants.
    Groth-Malonek M; Pruchner D; Grewe F; Knoop V
    Mol Biol Evol; 2005 Jan; 22(1):117-25. PubMed ID: 15356283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitochondrial apocytochrome b genes of two Agrocybe species suggest lateral transfers of group I homing introns among phylogenetically distant fungi.
    Mouhamadou B; Férandon C; Barroso G; Labarère J
    Fungal Genet Biol; 2006 Mar; 43(3):135-45. PubMed ID: 16504553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids.
    Oxelman B; Yoshikawa N; McConaughy BL; Luo J; Denton AL; Hall BD
    Mol Phylogenet Evol; 2004 Aug; 32(2):462-79. PubMed ID: 15223030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms.
    Seif E; Leigh J; Liu Y; Roewer I; Forget L; Lang BF
    Nucleic Acids Res; 2005; 33(2):734-44. PubMed ID: 15689432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms.
    Müller KF; Borsch T; Hilu KW
    Mol Phylogenet Evol; 2006 Oct; 41(1):99-117. PubMed ID: 16904914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explosive invasion of plant mitochondria by a group I intron.
    Cho Y; Qiu YL; Kuhlman P; Palmer JD
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14244-9. PubMed ID: 9826685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of Piperales--matK gene and trnK intron sequence data reveal lineage specific resolution contrast.
    Wanke S; Jaramillo MA; Borsch T; Samain MS; Quandt D; Neinhuis C
    Mol Phylogenet Evol; 2007 Feb; 42(2):477-97. PubMed ID: 16978885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny.
    Gugerli F; Sperisen C; Büchler U; Brunner I; Brodbeck S; Palmer JD; Qiu YL
    Mol Phylogenet Evol; 2001 Nov; 21(2):167-75. PubMed ID: 11697913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic signal in matK vs. trnK: a case study in early diverging eudicots (angiosperms).
    Hilu KW; Black C; Diouf D; Burleigh JG
    Mol Phylogenet Evol; 2008 Sep; 48(3):1120-30. PubMed ID: 18603450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails.
    Wikström N; Pryer KM
    Mol Phylogenet Evol; 2005 Sep; 36(3):484-93. PubMed ID: 15922630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introduction of a nuclear marker for phylogenetic analysis of Nepenthaceae.
    Meimberg H; Heubl G
    Plant Biol (Stuttg); 2006 Nov; 8(6):831-40. PubMed ID: 17203435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duplicate genes and the root of angiosperms, with an example using phytochrome sequences.
    Donoghue MJ; Mathews S
    Mol Phylogenet Evol; 1998 Jun; 9(3):489-500. PubMed ID: 9667997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms.
    Magallón S
    Syst Biol; 2010 Jul; 59(4):384-99. PubMed ID: 20538759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.