These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18158843)

  • 1. The effects of selected dietary bioflavonoid supplementation on dental caries in young rats fed a high-sucrose diet.
    Wood N
    J Med Food; 2007 Dec; 10(4):694-701. PubMed ID: 18158843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of dietary bioflavonoid (rutin, quercetin, and naringin) supplementation on physiological changes in molar crestal alveolar bone-cemento-enamel junction distance in young rats.
    Wood N
    J Med Food; 2004; 7(2):192-6. PubMed ID: 15298767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of dietary naringenin supplementation on physiological changes in molar crestal alveolar bone-cemento-enamel junction distance in young rats.
    Wood N
    J Med Food; 2005; 8(1):31-5. PubMed ID: 15857206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of iron salts in sucrose on dental caries and plaque in rats.
    Miguel JC; Bowen WH; Pearson SK
    Arch Oral Biol; 1997 May; 42(5):377-83. PubMed ID: 9233847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of protein deficiency induced by raw soy with and without sucrose on dentine formation and dentinal caries in young rats.
    Huumonen S; Larmas M
    Arch Oral Biol; 2005 May; 50(5):453-9. PubMed ID: 15777527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dental caries in rats associated with Candida albicans.
    Klinke T; Guggenheim B; Klimm W; Thurnheer T
    Caries Res; 2011; 45(2):100-6. PubMed ID: 21412001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the prevalence of reduced salivary flow rate in relation to general health and dental caries, and effect of iron supplementation.
    Flink H
    Swed Dent J Suppl; 2007; (192):3-50, 2 p preceding table of contents. PubMed ID: 18274060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of different diets on oral bacteria and caries activity in Sprague-Dawley rats.
    Zhu H; Willcox MD; Green RM; Knox KW
    Microbios; 1997; 91(367):105-20. PubMed ID: 9467925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greater concentration of dietary sucrose decreases dentin formation and increases the area of dentinal caries in growing rats.
    Huumonen S; Tjäderhane L; Larmas M
    J Nutr; 1997 Nov; 127(11):2226-30. PubMed ID: 9349851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of early weaning on dentin formation and dentinal caries in rats.
    Hietala EL; Autio J; Larmas M
    Acta Odontol Scand; 1997 Aug; 55(4):201-5. PubMed ID: 9298161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutans streptococci and caries prevalence in children after early maternal caries prevention: a follow-up at 19 years of age.
    Köhler B; Andréen I
    Caries Res; 2012; 46(5):474-80. PubMed ID: 22796731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-sucrose diet reduces defensive reactions of the pulpo-dentinal complex to dentinal caries in young rats.
    Huumonen S; Tjäderhane L; Bäckman T; Hietala EL; Pekkala E; Larmas M
    Acta Odontol Scand; 2001 Apr; 59(2):83-7. PubMed ID: 11370755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cariogenic potential of cows', human and infant formula milks and effect of fluoride supplementation.
    Peres RC; Coppi LC; Volpato MC; Groppo FC; Cury JA; Rosalen PL
    Br J Nutr; 2009 Feb; 101(3):376-82. PubMed ID: 18577299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of frequency of exposure to iron-sucrose on the incidence of dental caries in desalivated rats.
    Miguel JC; Bowen WH; Pearson SK
    Caries Res; 1997; 31(3):238-43. PubMed ID: 9165197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supplementation of domestic sugar (sucrose) with fluoride. Effects on experimental dental caries, plaque pH, and fluoride levels in plaque and enamel.
    Pearce EI; Cutress TW; Sissons CH; Coote GE
    N Z Dent J; 1992 Jul; 88(393):84-8. PubMed ID: 1508441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of dietary iron on the dental caries incidence and growth of rats fed an experimental diet.
    Sintes JL; Miller SA
    Arch Latinoam Nutr; 1983 Jun; 33(2):322-38. PubMed ID: 6673672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of two sucrose diets on formation of dentin and predentin in growing rats.
    Autio J; Hietala EL; Larmas M
    Acta Odontol Scand; 1997 Oct; 55(5):292-5. PubMed ID: 9370026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes with time in the oral microflora and dental caries induction in hyposalivated rats fed on sucrose diet.
    Ooshima T; Yoshida T; Aono W; Takei T; Izumitani A; Sobue S; Hamada S
    Microbiol Immunol; 1992; 36(12):1223-31. PubMed ID: 1287402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbiological impressions of teeth, saliva and dietary fibre can predict caries activity.
    Coogan MM; Mackeown JM; Galpin JS; Fatti LP
    J Dent; 2008 Nov; 36(11):892-9. PubMed ID: 18760520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship among microbiological composition and presence of dental plaque, sugar exposure, social factors and different stages of early childhood caries.
    Parisotto TM; Steiner-Oliveira C; Duque C; Peres RC; Rodrigues LK; Nobre-dos-Santos M
    Arch Oral Biol; 2010 May; 55(5):365-73. PubMed ID: 20381791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.