BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 18159220)

  • 1. Large Maf Transcription Factors: Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation.
    Yang Y; Cvekl A
    Einstein J Biol Med; 2007; 23(1):2-11. PubMed ID: 18159220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional factors, Mafs and their biological roles.
    Tsuchiya M; Misaka R; Nitta K; Tsuchiya K
    World J Diabetes; 2015 Feb; 6(1):175-83. PubMed ID: 25685288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of mouse alphaB- and gammaF-crystallin genes in lens: opposite promoter-specific interactions between Pax6 and large Maf transcription factors.
    Yang Y; Chauhan BK; Cveklova K; Cvekl A
    J Mol Biol; 2004 Nov; 344(2):351-68. PubMed ID: 15522290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the chicken L-Maf, MafB and c-Maf in crystallin gene regulation and lens differentiation.
    Yoshida T; Yasuda K
    Genes Cells; 2002 Jul; 7(7):693-706. PubMed ID: 12081646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neither MafA/L-Maf nor MafB is essential for lens development in mice.
    Takeuchi T; Kudo T; Ogata K; Hamada M; Nakamura M; Kito K; Abe Y; Ueda N; Yamamoto M; Engel JD; Takahashi S
    Genes Cells; 2009 Aug; 14(8):941-7. PubMed ID: 19624757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential roles of large mafs in cell lineages and developing pancreas.
    Tsuchiya M; Taniguchi S; Yasuda K; Nitta K; Maeda A; Shigemoto M; Tsuchiya K
    Pancreas; 2006 May; 32(4):408-16. PubMed ID: 16670624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of large MAF transcription factors in the mouse endocrine pancreas.
    Abdellatif AM; Ogata K; Kudo T; Xiafukaiti G; Chang YH; Katoh MC; El-Morsy SE; Oishi H; Takahashi S
    Exp Anim; 2015; 64(3):305-12. PubMed ID: 25912440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular insights into dimerization inhibition of c-Maf transcription factor.
    Pellegrino S; Ronda L; Annoni C; Contini A; Erba E; Gelmi ML; Piano R; Paredi G; Mozzarelli A; Bettati S
    Biochim Biophys Acta; 2014 Dec; 1844(12):2108-15. PubMed ID: 25220806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells.
    Nishimura W; Kondo T; Salameh T; El Khattabi I; Dodge R; Bonner-Weir S; Sharma A
    Dev Biol; 2006 May; 293(2):526-39. PubMed ID: 16580660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Large MAF Transcription Factors: Functions, Pathology, and Mouse Models with Point Mutations.
    Fujino M; Ojima M; Takahashi S
    Genes (Basel); 2023 Sep; 14(10):. PubMed ID: 37895232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of large MAF transcription factors and elucidation of their relationships with human diseases.
    Takahashi S
    Exp Anim; 2021 Aug; 70(3):264-271. PubMed ID: 33762508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators?
    Blank V
    J Mol Biol; 2008 Feb; 376(4):913-25. PubMed ID: 18201722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens.
    Cvekl A; Yang Y; Chauhan BK; Cveklova K
    Int J Dev Biol; 2004; 48(8-9):829-44. PubMed ID: 15558475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenomic analysis and expression patterns of large Maf genes in Xenopus tropicalis provide new insights into the functional evolution of the gene family in osteichthyans.
    Coolen M; Sii-Felice K; Bronchain O; Mazabraud A; Bourrat F; Rétaux S; Felder-Schmittbuhl MP; Mazan S; Plouhinec JL
    Dev Genes Evol; 2005 Jul; 215(7):327-39. PubMed ID: 15759153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific regulation of the mouse alphaA-crystallin gene in lens via recruitment of Pax6 and c-Maf to its promoter.
    Yang Y; Cvekl A
    J Mol Biol; 2005 Aug; 351(3):453-69. PubMed ID: 16023139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel DNA binding mechanism for maf basic region-leucine zipper factors inferred from a MafA-DNA complex structure and binding specificities.
    Lu X; Guanga GP; Wan C; Rose RB
    Biochemistry; 2012 Dec; 51(48):9706-17. PubMed ID: 23148532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SUMOylation negatively regulates transcriptional and oncogenic activities of MafA.
    Kanai K; Reza HM; Kamitani A; Hamazaki Y; Han SI; Yasuda K; Kataoka K
    Genes Cells; 2010 Sep; 15(9):971-82. PubMed ID: 20718938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation, characterization, and expression analysis of zebrafish large Mafs.
    Kajihara M; Kawauchi S; Kobayashi M; Ogino H; Takahashi S; Yasuda K
    J Biochem; 2001 Jan; 129(1):139-46. PubMed ID: 11134968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins.
    Kerppola TK; Curran T
    Oncogene; 1994 Nov; 9(11):3149-58. PubMed ID: 7936637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HTLV-1 basic leucine-zipper factor, HBZ, interacts with MafB and suppresses transcription through a Maf recognition element.
    Ohshima T; Mukai R; Nakahara N; Matsumoto J; Isono O; Kobayashi Y; Takahashi S; Shimotohno K
    J Cell Biochem; 2010 Sep; 111(1):187-94. PubMed ID: 20506502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.