These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 18159926)
1. Effect of cholesterol on the release of amphotericin B from PEG-phospholipid micelles. Vakil R; Kwon GS Mol Pharm; 2008; 5(1):98-104. PubMed ID: 18159926 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic and kinetic stability of DSPE-PEG(2000) micelles in the presence of bovine serum albumin. Kastantin M; Missirlis D; Black M; Ananthanarayanan B; Peters D; Tirrell M J Phys Chem B; 2010 Oct; 114(39):12632-40. PubMed ID: 20828210 [TBL] [Abstract][Full Text] [Related]
3. Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs. Moribe K; Maruyama S; Inoue Y; Suzuki T; Fukami T; Tomono K; Higashi K; Tozuka Y; Yamamoto K Int J Pharm; 2010 Mar; 387(1-2):236-43. PubMed ID: 20005934 [TBL] [Abstract][Full Text] [Related]
4. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) and PEG-phospholipid form stable mixed micelles in aqueous media. Vakil R; Kwon GS Langmuir; 2006 Nov; 22(23):9723-9. PubMed ID: 17073503 [TBL] [Abstract][Full Text] [Related]
5. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. Shao K; Huang R; Li J; Han L; Ye L; Lou J; Jiang C J Control Release; 2010 Oct; 147(1):118-26. PubMed ID: 20609375 [TBL] [Abstract][Full Text] [Related]
6. Design and evaluation of micellar nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG). Chandran T; Katragadda U; Teng Q; Tan C Int J Pharm; 2010 Jun; 392(1-2):170-7. PubMed ID: 20363305 [TBL] [Abstract][Full Text] [Related]
7. Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B. Alvarez C; Shin DH; Kwon GS Pharm Res; 2016 Sep; 33(9):2098-106. PubMed ID: 27198671 [TBL] [Abstract][Full Text] [Related]
8. Amphotericin B-loaded poly(ethylene glycol)-poly(lactide) micelles: preparation, freeze-drying, and in vitro release. Yang ZL; Li XR; Yang KW; Liu Y J Biomed Mater Res A; 2008 May; 85(2):539-46. PubMed ID: 17729259 [TBL] [Abstract][Full Text] [Related]
9. Combination antifungal therapy involving amphotericin B, rapamycin and 5-fluorocytosine using PEG-phospholipid micelles. Vakil R; Knilans K; Andes D; Kwon GS Pharm Res; 2008 Sep; 25(9):2056-64. PubMed ID: 18415047 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Sezgin Z; Yüksel N; Baykara T Eur J Pharm Biopharm; 2006 Nov; 64(3):261-8. PubMed ID: 16884896 [TBL] [Abstract][Full Text] [Related]
11. Enhanced stability of PEG-block-poly(N-hexyl stearate l-aspartamide) micelles in the presence of serum proteins. Diezi TA; Bae Y; Kwon GS Mol Pharm; 2010 Aug; 7(4):1355-60. PubMed ID: 20575526 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Wang Y; Ke X; Voo ZX; Yap SSL; Yang C; Gao S; Liu S; Venkataraman S; Obuobi SAO; Khara JS; Yang YY; Ee PLR Acta Biomater; 2016 Dec; 46():211-220. PubMed ID: 27686042 [TBL] [Abstract][Full Text] [Related]
13. Conformation and position of membrane-bound amphotericin B deduced from NMR in SDS micelles. Matsumori N; Houdai T; Murata M J Org Chem; 2007 Feb; 72(3):700-6. PubMed ID: 17253784 [TBL] [Abstract][Full Text] [Related]
14. Poly(ethylene glycol)-conjugated phospholipids in aqueous micellar solutions: hydration, static structure, and interparticle interactions. Sato T; Sakai H; Sou K; Buchner R; Tsuchida E J Phys Chem B; 2007 Feb; 111(6):1393-401. PubMed ID: 17286354 [TBL] [Abstract][Full Text] [Related]
16. Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B. Diezi TA; Kwon G Pharm Res; 2012 Jul; 29(7):1737-44. PubMed ID: 22130733 [TBL] [Abstract][Full Text] [Related]
17. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Adams ML; Andes DR; Kwon GS Biomacromolecules; 2003; 4(3):750-7. PubMed ID: 12741794 [TBL] [Abstract][Full Text] [Related]
18. Utility of poly(ethylene glycol) conjugation to create prodrugs of amphotericin B. Conover CD; Zhao H; Longley CB; Shum KL; Greenwald RB Bioconjug Chem; 2003; 14(3):661-6. PubMed ID: 12757392 [TBL] [Abstract][Full Text] [Related]
19. Enhanced encapsulation of amphotericin B into liposomes by complex formation with polyethylene glycol derivatives. Moribe K; Tanaka E; Maruyama K; Iwatsuru M Pharm Res; 1998 Nov; 15(11):1737-42. PubMed ID: 9833996 [TBL] [Abstract][Full Text] [Related]
20. Dynamic and structural aspects of PEGylated liposomes monitored by NMR. Leal C; Rögnvaldsson S; Fossheim S; Nilssen EA; Topgaard D J Colloid Interface Sci; 2008 Sep; 325(2):485-93. PubMed ID: 18589432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]