These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

762 related articles for article (PubMed ID: 18159942)

  • 1. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.
    Yoshida S; Shimada Y; Kondoh D; Kouzuma Y; Ghosh AK; Jacobs-Lorena M; Sinden RE
    PLoS Pathog; 2007 Dec; 3(12):e192. PubMed ID: 18159942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrupting malaria transmission by genetic manipulation of anopheline mosquitoes.
    Jacobs-Lorena M
    J Vector Borne Dis; 2003; 40(3-4):73-7. PubMed ID: 15119075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite.
    Ito J; Ghosh A; Moreira LA; Wimmer EA; Jacobs-Lorena M
    Nature; 2002 May; 417(6887):452-5. PubMed ID: 12024215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lectin-carbohydrate recognition mechanism of Plasmodium berghei in the midgut of malaria vector Anopheles stephensi using quantum dot as a new approach.
    Basseri HR; Javazm MS; Farivar L; Abai MR
    Acta Trop; 2016 Apr; 156():37-42. PubMed ID: 26772447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of transgenic Plasmodium berghei expressing the Plasmodium vivax antigen P25 to determine the transmission-blocking activity of sera from malaria vaccine trials.
    Ramjanee S; Robertson JS; Franke-Fayard B; Sinha R; Waters AP; Janse CJ; Wu Y; Blagborough AM; Saul A; Sinden RE
    Vaccine; 2007 Jan; 25(5):886-94. PubMed ID: 17049690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CTRP is essential for mosquito infection by malaria ookinetes.
    Dessens JT; Beetsma AL; Dimopoulos G; Wengelnik K; Crisanti A; Kafatos FC; Sinden RE
    EMBO J; 1999 Nov; 18(22):6221-7. PubMed ID: 10562534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes.
    Borhani Dizaji N; Basseri HR; Naddaf SR; Heidari M
    Gene; 2014 Oct; 550(2):245-52. PubMed ID: 25150160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Midgut specific immune response of vector mosquito Anopheles stephensi to malaria parasite Plasmodium.
    Gakhar SK; Shandilya HK
    Indian J Exp Biol; 2001 Mar; 39(3):287-90. PubMed ID: 11495292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the sporogonic development of Plasmodium falciparum and Plasmodium berghei in anopheline mosquitoes.
    Do Rosario VE; Vaughan JA; Coleman RE
    Parassitologia; 1989 Apr; 31(1):101-11. PubMed ID: 2487889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of proteins in the midgut of Anopheles albimanus infected with Plasmodium berghei.
    Serrano-Pinto V; Acosta-Pérez M; Luviano-Bazán D; Hurtado-Sil G; Batista CV; Martínez-Barnetche J; Lánz-Mendoza H
    Insect Biochem Mol Biol; 2010 Oct; 40(10):752-8. PubMed ID: 20692341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genetic module regulates the melanization response of Anopheles to Plasmodium.
    Volz J; Müller HM; Zdanowicz A; Kafatos FC; Osta MA
    Cell Microbiol; 2006 Sep; 8(9):1392-405. PubMed ID: 16922859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salivary gland transcriptome analysis during Plasmodium infection in malaria vector Anopheles stephensi.
    Dixit R; Sharma A; Mourya DT; Kamaraju R; Patole MS; Shouche YS
    Int J Infect Dis; 2009 Sep; 13(5):636-46. PubMed ID: 19128996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic mosquitoes and malaria transmission.
    Christophides GK
    Cell Microbiol; 2005 Mar; 7(3):325-33. PubMed ID: 15679836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic dissection of a Plasmodium-refractory strain of malaria vector Anopheles stephensi: the reduced susceptibility to P. berghei and P. yoelii.
    Shinzawa N; Ishino T; Tachibana M; Tsuboi T; Torii M
    PLoS One; 2013; 8(5):e63753. PubMed ID: 23717475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors regulating natural transmission of Plasmodium berghei to the mosquito vector, and the cloning of a transmission-blocking immunogen.
    Sinden RE; Barker GC; Paton MJ; Fleck SL; Butcher GA; Waters A; Janse CJ; Rodriguez MH
    Parassitologia; 1993 Jul; 35 Suppl():107-12. PubMed ID: 7694225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complex interplay between mosquito positive and negative regulators of Plasmodium development.
    Vlachou D; Kafatos FC
    Curr Opin Microbiol; 2005 Aug; 8(4):415-21. PubMed ID: 15996894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of Plasmodium falciparum in experimentally infected Anopheles gambiae (Diptera: Culicidae) under ambient microhabitat temperature in western Kenya.
    Okech BA; Gouagna LC; Walczak E; Kabiru EW; Beier JC; Yan G; Githure JI
    Acta Trop; 2004 Oct; 92(2):99-108. PubMed ID: 15350861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mosquito-Plasmodium interactions in response to immune activation of the vector.
    Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM
    Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion.
    Vlachou D; Zimmermann T; Cantera R; Janse CJ; Waters AP; Kafatos FC
    Cell Microbiol; 2004 Jul; 6(7):671-85. PubMed ID: 15186403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malaria parasites in mosquitoes: laboratory models, evolutionary temptation and the real world.
    Boëte C
    Trends Parasitol; 2005 Oct; 21(10):445-7. PubMed ID: 16099724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.