BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18159948)

  • 1. Distinct roles and regulations for HoxD genes in metanephric kidney development.
    Di-Poï N; Zákány J; Duboule D
    PLoS Genet; 2007 Dec; 3(12):e232. PubMed ID: 18159948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development.
    Kobayashi A; Kwan KM; Carroll TJ; McMahon AP; Mendelsohn CL; Behringer RR
    Development; 2005 Jun; 132(12):2809-23. PubMed ID: 15930111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme.
    Sajithlal G; Zou D; Silvius D; Xu PX
    Dev Biol; 2005 Aug; 284(2):323-36. PubMed ID: 16018995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six1 is required for the early organogenesis of mammalian kidney.
    Xu PX; Zheng W; Huang L; Maire P; Laclef C; Silvius D
    Development; 2003 Jul; 130(14):3085-94. PubMed ID: 12783782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract.
    Kume T; Deng K; Hogan BL
    Development; 2000 Apr; 127(7):1387-95. PubMed ID: 10704385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hox11 paralogous genes are essential for metanephric kidney induction.
    Wellik DM; Hawkes PJ; Capecchi MR
    Genes Dev; 2002 Jun; 16(11):1423-32. PubMed ID: 12050119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hoxa11 and Hoxd11 regulate branching morphogenesis of the ureteric bud in the developing kidney.
    Patterson LT; Pembaur M; Potter SS
    Development; 2001 Jun; 128(11):2153-61. PubMed ID: 11493536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive microarray analysis of Hoxa11/Hoxd11 mutant kidney development.
    Schwab K; Hartman HA; Liang HC; Aronow BJ; Patterson LT; Potter SS
    Dev Biol; 2006 May; 293(2):540-54. PubMed ID: 16581055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in paralogous Hox genes result in overlapping homeotic transformations of the axial skeleton: evidence for unique and redundant function.
    Horan GS; Kovàcs EN; Behringer RR; Featherstone MS
    Dev Biol; 1995 May; 169(1):359-72. PubMed ID: 7750651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TGFbeta superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population.
    Oxburgh L; Chu GC; Michael SK; Robertson EJ
    Development; 2004 Sep; 131(18):4593-605. PubMed ID: 15342483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud.
    Zhao H; Kegg H; Grady S; Truong HT; Robinson ML; Baum M; Bates CM
    Dev Biol; 2004 Dec; 276(2):403-15. PubMed ID: 15581874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations.
    Spitz F; Gonzalez F; Peichel C; Vogt TF; Duboule D; Zákány J
    Genes Dev; 2001 Sep; 15(17):2209-14. PubMed ID: 11544178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atlas of Hox gene expression in the developing kidney.
    Patterson LT; Potter SS
    Dev Dyn; 2004 Apr; 229(4):771-9. PubMed ID: 15042701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs.
    Kmita M; Fraudeau N; Hérault Y; Duboule D
    Nature; 2002 Nov; 420(6912):145-50. PubMed ID: 12432383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis.
    Michos O; Gonçalves A; Lopez-Rios J; Tiecke E; Naillat F; Beier K; Galli A; Vainio S; Zeller R
    Development; 2007 Jul; 134(13):2397-405. PubMed ID: 17522159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of posterior HoxD genes in the morphogenesis of the anal sphincter.
    Kondo T; Dollé P; Zákány J; Duboule D
    Development; 1996 Sep; 122(9):2651-9. PubMed ID: 8787740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of Hox gene colinearity: transposition of the anterior Hoxb1 gene into the posterior HoxD complex.
    Kmita M; van Der Hoeven F; Zákány J; Krumlauf R; Duboule D
    Genes Dev; 2000 Jan; 14(2):198-211. PubMed ID: 10652274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of colinearity in AbdB genes of the mouse HoxD complex.
    Kondo T; Zákány J; Duboule D
    Mol Cell; 1998 Jan; 1(2):289-300. PubMed ID: 9659925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis.
    Srinivas S; Goldberg MR; Watanabe T; D'Agati V; al-Awqati Q; Costantini F
    Dev Genet; 1999; 24(3-4):241-51. PubMed ID: 10322632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of kidney mesenchymal genes by a combination of microarray analysis and Sall1-GFP knockin mice.
    Takasato M; Osafune K; Matsumoto Y; Kataoka Y; Yoshida N; Meguro H; Aburatani H; Asashima M; Nishinakamura R
    Mech Dev; 2004 Jun; 121(6):547-57. PubMed ID: 15172686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.