These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18160166)

  • 1. DNA oligonucleotide-assisted genetic manipulation increases transformation and homologous recombination efficiencies: Evidence from gene targeting of Dictyostelium discoideum.
    Kuwayama H; Yanagida T; Ueda M
    J Biotechnol; 2008 Feb; 133(4):418-23. PubMed ID: 18160166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Desalted deep sea water increases transformation and homologous recombination efficiencies in Dictyostelium discoideum.
    Kuwayama H; Nagasaki A
    J Mol Microbiol Biotechnol; 2008; 14(4):157-62. PubMed ID: 17693704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of low frequency knockout mutants in Dictyostelium discoideum created by single or double homologous recombination.
    Charette SJ; Cornillon S; Cosson P
    J Biotechnol; 2006 Mar; 122(1):1-4. PubMed ID: 16198440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene targeting using zinc finger nucleases.
    Porteus MH; Carroll D
    Nat Biotechnol; 2005 Aug; 23(8):967-73. PubMed ID: 16082368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method (GOREC) for directed mutagenesis and gene repair by homologous recombination.
    Maurisse R; Feugeas JP; Biet E; Kuzniak I; Leboulch P; Dutreix M; Sun JS
    Gene Ther; 2002 Jun; 9(11):703-7. PubMed ID: 12032692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid and efficient method to generate multiple gene disruptions in Dictyostelium discoideum using a single selectable marker and the Cre-loxP system.
    Faix J; Kreppel L; Shaulsky G; Schleicher M; Kimmel AR
    Nucleic Acids Res; 2004 Oct; 32(19):e143. PubMed ID: 15507682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient somatic gene targeting in the lymphoid human cell line DG75.
    Feederle R; Delecluse HJ; Rouault JP; Schepers A; Hammerschmidt W
    Gene; 2004 Dec; 343(1):91-7. PubMed ID: 15563834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blasticidin resistance cassette in symmetrical polylinkers for insertional inactivation of genes in Dictyostelium.
    Půta F; Zeng C
    Folia Biol (Praha); 1998; 44(5):185-8. PubMed ID: 10732710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient circularization in Escherichia coli of linear plasmid multimers from Dictyostelium discoideum genomic DNA.
    Barth C; Wilczynska Z; Pontes L; Fraser DJ; Fisher PR
    Plasmid; 1996 Sep; 36(2):86-94. PubMed ID: 8954880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triplex-stimulated intermolecular recombination at a single-copy genomic target.
    Knauert MP; Kalish JM; Hegan DC; Glazer PM
    Mol Ther; 2006 Sep; 14(3):392-400. PubMed ID: 16731047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene targeting for gene therapy: prospects.
    Lanzov VA
    Mol Genet Metab; 1999 Oct; 68(2):276-82. PubMed ID: 10527679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker.
    Maier FJ; Malz S; Lösch AP; Lacour T; Schäfer W
    FEMS Yeast Res; 2005 Apr; 5(6-7):653-62. PubMed ID: 15780665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene.
    Zorin B; Lu Y; Sizova I; Hegemann P
    Gene; 2009 Mar; 432(1-2):91-6. PubMed ID: 19121376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice.
    Yamauchi T; Johzuka-Hisatomi Y; Fukada-Tanaka S; Terada R; Nakamura I; Iida S
    Plant J; 2009 Oct; 60(2):386-96. PubMed ID: 19519802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient gene targeting in mouse embryonic stem cells.
    Templeton NS; Roberts DD; Safer B
    Gene Ther; 1997 Jul; 4(7):700-9. PubMed ID: 9282171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and quantitative detection of homologous and non-homologous recombination events using three oligonucleotide MLPA.
    Langerak P; Nygren AO; Schouten JP; Jacobs H
    Nucleic Acids Res; 2005 Dec; 33(22):e188. PubMed ID: 16340005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of monomorphic and pleomorphic Trypanosoma brucei.
    McCulloch R; Vassella E; Burton P; Boshart M; Barry JD
    Methods Mol Biol; 2004; 262():53-86. PubMed ID: 14769956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting.
    Iiizumi S; Kurosawa A; So S; Ishii Y; Chikaraishi Y; Ishii A; Koyama H; Adachi N
    Nucleic Acids Res; 2008 Nov; 36(19):6333-42. PubMed ID: 18835848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids.
    Dieken ES; Epner EM; Fiering S; Fournier RE; Groudine M
    Nat Genet; 1996 Feb; 12(2):174-82. PubMed ID: 8563756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic side effects accompanying gene targeting in yeast: the influence of short heterologous termini.
    Svetec IK; Stafa A; Zgaga Z
    Yeast; 2007 Aug; 24(8):637-52. PubMed ID: 17534847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.