BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

959 related articles for article (PubMed ID: 18160701)

  • 1. 5-HT receptor regulation of neurotransmitter release.
    Fink KB; Göthert M
    Pharmacol Rev; 2007 Dec; 59(4):360-417. PubMed ID: 18160701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic receptors for dopamine, histamine, and serotonin.
    Feuerstein TJ
    Handb Exp Pharmacol; 2008; (184):289-338. PubMed ID: 18064418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies.
    Di Matteo V; Di Giovanni G; Pierucci M; Esposito E
    Prog Brain Res; 2008; 172():7-44. PubMed ID: 18772026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness.
    Monti JM
    Sleep Med Rev; 2010 Oct; 14(5):307-17. PubMed ID: 20153669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain.
    Raiteri M; Leardi R; Marchi M
    J Pharmacol Exp Ther; 1984 Jan; 228(1):209-14. PubMed ID: 6141277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is there a functional linkage between neurotransmitter uptake mechanisms and presynaptic receptors?
    Raiteri M; Bonanno G; Marchi M; Maura G
    J Pharmacol Exp Ther; 1984 Dec; 231(3):671-7. PubMed ID: 6150107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic modulation of 5-HT release in the rat septal region.
    Rutz S; Riegert C; Rothmaier AK; Jackisch R
    Neuroscience; 2007 May; 146(2):643-58. PubMed ID: 17383104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of release processes in central serotoninergic neurons.
    Héry F; Ternaux JP
    J Physiol (Paris); 1981; 77(2-3):287-301. PubMed ID: 6457140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological characterization of (S)-(2)-5-ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine HCl (SIB-1508Y, Altinicline), a novel nicotinic acetylcholine receptor agonist.
    Rao TS; Adams PB; Correa LD; Santori EM; Sacaan AI; Reid RT; Cosford ND
    Brain Res; 2008 Oct; 1234():16-24. PubMed ID: 18692487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: a potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release.
    Berlanga ML; Simpson TK; Alcantara AA
    J Comp Neurol; 2005 Nov; 492(1):34-49. PubMed ID: 16175554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking.
    Monti JM; Jantos H
    Prog Brain Res; 2008; 172():625-46. PubMed ID: 18772053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn.
    Fukushima T; Ohtsubo T; Tsuda M; Yanagawa Y; Hori Y
    J Neurophysiol; 2009 Sep; 102(3):1459-71. PubMed ID: 19369358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of 5-HT 1B receptors facilitates contextual aversive learning in mice by disinhibition of cholinergic and glutamatergic neurotransmission.
    Eriksson TM; Madjid N; Elvander-Tottie E; Stiedl O; Svenningsson P; Ogren SO
    Neuropharmacology; 2008 Jun; 54(7):1041-50. PubMed ID: 18394658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of prejunctional serotonin receptors modulating [3H]acetylcholine release in the human detrusor.
    D'Agostino G; Condino AM; Gallinari P; Franceschetti GP; Tonini M
    J Pharmacol Exp Ther; 2006 Jan; 316(1):129-35. PubMed ID: 16166271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of 5-HT(1A) receptors in learning and memory.
    Ogren SO; Eriksson TM; Elvander-Tottie E; D'Addario C; Ekström JC; Svenningsson P; Meister B; Kehr J; Stiedl O
    Behav Brain Res; 2008 Dec; 195(1):54-77. PubMed ID: 18394726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release.
    Marcos B; Gil-Bea FJ; Hirst WD; García-Alloza M; Ramírez MJ
    Eur J Neurosci; 2006 Sep; 24(5):1299-306. PubMed ID: 16987217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in and modulation of receptor activity in hepatic encephalopathy].
    Kienzl E; Riederer P; Brücke T; Kleinberger G; Jellinger K
    Infusionsther Klin Ernahr; 1985 Feb; 12(1):32, 37-45. PubMed ID: 2859245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalamic regulation of striatal acetylcholine efflux is both direct and indirect and qualitatively altered in the dopamine-depleted striatum.
    Zackheim J; Abercrombie ED
    Neuroscience; 2005; 131(2):423-36. PubMed ID: 15708484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems.
    Miczek KA; Fish EW; De Bold JF; De Almeida RM
    Psychopharmacology (Berl); 2002 Oct; 163(3-4):434-58. PubMed ID: 12373445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of central synaptic transmission by 5-HT(1B) auto- and heteroreceptors.
    Morikawa H; Manzoni OJ; Crabbe JC; Williams JT
    Mol Pharmacol; 2000 Dec; 58(6):1271-8. PubMed ID: 11093763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.