These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 18161494)
1. Phycoremediation of heavy metals using transgenic microalgae. Rajamani S; Siripornadulsil S; Falcao V; Torres M; Colepicolo P; Sayre R Adv Exp Med Biol; 2007; 616():99-109. PubMed ID: 18161494 [TBL] [Abstract][Full Text] [Related]
2. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Leong YK; Chang JS Bioresour Technol; 2020 May; 303():122886. PubMed ID: 32046940 [TBL] [Abstract][Full Text] [Related]
3. Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor. Rajamani S; Torres M; Falcao V; Ewalt Gray J; Coury DA; Colepicolo P; Sayre R Plant Physiol; 2014 Feb; 164(2):1059-67. PubMed ID: 24368336 [TBL] [Abstract][Full Text] [Related]
4. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Ranjbar S; Malcata FX Molecules; 2022 Feb; 27(5):. PubMed ID: 35268582 [TBL] [Abstract][Full Text] [Related]
5. From industrial sites to environmental applications with Cupriavidus metallidurans. Diels L; Van Roy S; Taghavi S; Van Houdt R Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590 [TBL] [Abstract][Full Text] [Related]
6. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Priyadarshini E; Priyadarshini SS; Pradhan N Appl Microbiol Biotechnol; 2019 Apr; 103(8):3297-3316. PubMed ID: 30847543 [TBL] [Abstract][Full Text] [Related]
7. Microalgae - A promising tool for heavy metal remediation. Suresh Kumar K; Dahms HU; Won EJ; Lee JS; Shin KH Ecotoxicol Environ Saf; 2015 Mar; 113():329-52. PubMed ID: 25528489 [TBL] [Abstract][Full Text] [Related]
8. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Goswami RK; Agrawal K; Shah MP; Verma P Lett Appl Microbiol; 2022 Oct; 75(4):701-717. PubMed ID: 34562022 [TBL] [Abstract][Full Text] [Related]
9. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Siripornadulsil S; Traina S; Verma DP; Sayre RT Plant Cell; 2002 Nov; 14(11):2837-47. PubMed ID: 12417705 [TBL] [Abstract][Full Text] [Related]
11. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. Luo L; Ke C; Guo X; Shi B; Huang M Fish Shellfish Immunol; 2014 Jun; 38(2):318-29. PubMed ID: 24698996 [TBL] [Abstract][Full Text] [Related]
12. Environmental applications of chitosan and its derivatives. Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the response of three microalgae species exposed to elutriates of estuarine sediments based on growth and chemical speciation. Mucha AP; Leal MF; Bordalo AA; Vasconcelos MT Environ Toxicol Chem; 2003 Mar; 22(3):576-85. PubMed ID: 12627645 [TBL] [Abstract][Full Text] [Related]
14. Review on rewiring of microalgal strategies for the heavy metal remediation - A metal specific logistics and tactics. Aravind MK; Vignesh NS; Gayathri S; Anjitha N; Athira KM; Gunaseelan S; Arunkumar M; Sanjaykumar A; Karthikumar S; Ganesh Moorthy IM; Ashokkumar B; Pugazhendhi A; Varalakshmi P Chemosphere; 2023 Feb; 313():137310. PubMed ID: 36460155 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal detoxification in eukaryotic microalgae. Perales-Vela HV; Peña-Castro JM; Cañizares-Villanueva RO Chemosphere; 2006 Jun; 64(1):1-10. PubMed ID: 16405948 [TBL] [Abstract][Full Text] [Related]
16. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area-An application towards phycoremediation. Balaji S; Kalaivani T; Sushma B; Pillai CV; Shalini M; Rajasekaran C Int J Phytoremediation; 2016 Aug; 18(8):747-53. PubMed ID: 26587690 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. Olguín EJ; Sánchez-Galván G N Biotechnol; 2012 Nov; 30(1):3-8. PubMed ID: 22673055 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal tolerance in microalgae: Detoxification mechanisms and applications. Chakravorty M; Nanda M; Bisht B; Sharma R; Kumar S; Mishra A; Vlaskin MS; Chauhan PK; Kumar V Aquat Toxicol; 2023 Jul; 260():106555. PubMed ID: 37196506 [TBL] [Abstract][Full Text] [Related]
19. Phycoremediation of heavy metals by the three-color forms of Kappaphycus alvarezii. Suresh Kumar K; Ganesan K; Subba Rao PV J Hazard Mater; 2007 May; 143(1-2):590-2. PubMed ID: 17092641 [TBL] [Abstract][Full Text] [Related]
20. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. García-García JD; Sánchez-Thomas R; Moreno-Sánchez R Biotechnol Adv; 2016; 34(5):859-873. PubMed ID: 27184302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]