BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18161554)

  • 1. Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater.
    Morris JM; Jin S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jan; 43(1):18-23. PubMed ID: 18161554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells.
    Morris JM; Jin S
    J Hazard Mater; 2012 Apr; 213-214():474-7. PubMed ID: 22402341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells.
    Wang X; Cai Z; Zhou Q; Zhang Z; Chen C
    Biotechnol Bioeng; 2012 Feb; 109(2):426-33. PubMed ID: 22006588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells.
    Adelaja O; Keshavarz T; Kyazze G
    J Hazard Mater; 2015; 283():211-7. PubMed ID: 25279757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes.
    Venkidusamy K; Megharaj M; Marzorati M; Lockington R; Naidu R
    Sci Total Environ; 2016 Jan; 539():61-69. PubMed ID: 26360455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential electron acceptor model for evaluation of in situ bioremediation of petroleum hydrocarbon contaminants in groundwater.
    Brauner JS; Widdowson MA
    Ann N Y Acad Sci; 1997 Nov; 829():263-79. PubMed ID: 9472325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electricity generation from cysteine in a microbial fuel cell.
    Logan BE; Murano C; Scott K; Gray ND; Head IM
    Water Res; 2005 Mar; 39(5):942-52. PubMed ID: 15743641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel exoelectrogen from microbial fuel cell: Bioremediation of marine petroleum hydrocarbon pollutants.
    Li X; Zheng R; Zhang X; Liu Z; Zhu R; Zhang X; Gao D
    J Environ Manage; 2019 Apr; 235():70-76. PubMed ID: 30677657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.
    Mink JE; Hussain MM
    ACS Nano; 2013 Aug; 7(8):6921-7. PubMed ID: 23899322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous flowing membraneless microbial fuel cells with separated electrode chambers.
    Du F; Xie B; Dong W; Jia B; Dong K; Liu H
    Bioresour Technol; 2011 Oct; 102(19):8914-20. PubMed ID: 21821412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactants selectively reallocated the bacterial distribution in soil bioelectrochemical remediation of petroleum hydrocarbons.
    Li X; Zhao Q; Wang X; Li Y; Zhou Q
    J Hazard Mater; 2018 Feb; 344():23-32. PubMed ID: 29028494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.
    Li X; Wang X; Zhao Q; Wan L; Li Y; Zhou Q
    Biosens Bioelectron; 2016 Nov; 85():135-141. PubMed ID: 27162144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable approach for leachate treatment: electricity generation in microbial fuel cell.
    You SJ; Zhao QL; Jiang JQ; Zhang JN; Zhao SQ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(12):2721-34. PubMed ID: 17114103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of crude oil from the BP oil spill in the marsh sediments of southeast Louisiana, USA.
    Boopathy R; Shields S; Nunna S
    Appl Biochem Biotechnol; 2012 Jul; 167(6):1560-8. PubMed ID: 22350940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of hydrocarbon by co-culturing of biosurfactant-producing bacteria in microbial fuel cell with Fe
    Naaz T; Kumari S; Sharma K; Singh V; Khan AA; Pandit S; Priya K; Jadhav DA
    J Environ Manage; 2024 Feb; 351():119768. PubMed ID: 38100858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen availability effect on the performance of air-breathing cathode microbial fuel cell.
    Mateo S; Rodrigo M; Fonseca LP; Cañizares P; Fernandez-Morales FJ
    Biotechnol Prog; 2015; 31(4):900-7. PubMed ID: 25962613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bioelectric well: a novel approach for in situ treatment of hydrocarbon-contaminated groundwater.
    Palma E; Daghio M; Franzetti A; Petrangeli Papini M; Aulenta F
    Microb Biotechnol; 2018 Jan; 11(1):112-118. PubMed ID: 28696043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ bioremediation of groundwater contaminated with petroleum constituents using oxygen release compounds (ORCs).
    Kunukcu YK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):839-45. PubMed ID: 17558763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.