These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 18161684)
21. Regarding the validity of the time-dependent Kohn-Sham approach for electron-nuclear dynamics via trajectory surface hopping. Fischer SA; Habenicht BF; Madrid AB; Duncan WR; Prezhdo OV J Chem Phys; 2011 Jan; 134(2):024102. PubMed ID: 21241075 [TBL] [Abstract][Full Text] [Related]
22. QM/MM study of the absorption spectra of DsRed.M1 chromophores. Sanchez-Garcia E; Doerr M; Thiel W J Comput Chem; 2010 Jun; 31(8):1603-12. PubMed ID: 20014299 [TBL] [Abstract][Full Text] [Related]
23. Calculation of excitation energies of open-shell molecules with spatially degenerate ground states. I. Transformed reference via an intermediate configuration Kohn-Sham density-functional theory and applications to d1 and d2 systems with octahedral and tetrahedral symmetries. Seth M; Ziegler T J Chem Phys; 2005 Oct; 123(14):144105. PubMed ID: 16238372 [TBL] [Abstract][Full Text] [Related]
24. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules. Cao Y; Hughes T; Giesen D; Halls MD; Goldberg A; Vadicherla TR; Sastry M; Patel B; Sherman W; Weisman AL; Friesner RA J Comput Chem; 2016 Jun; 37(16):1425-41. PubMed ID: 27013141 [TBL] [Abstract][Full Text] [Related]
25. Excitation energies in density functional theory: an evaluation and a diagnostic test. Peach MJ; Benfield P; Helgaker T; Tozer DJ J Chem Phys; 2008 Jan; 128(4):044118. PubMed ID: 18247941 [TBL] [Abstract][Full Text] [Related]
26. Can TD-DFT calculations accurately describe the excited states behavior of stacked nucleobases? The cytosine dimer as a test case. Santoro F; Barone V; Improta R J Comput Chem; 2008 Apr; 29(6):957-64. PubMed ID: 17963224 [TBL] [Abstract][Full Text] [Related]
27. Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multireference configuration interaction. Silva-Junior MR; Schreiber M; Sauer SP; Thiel W J Chem Phys; 2008 Sep; 129(10):104103. PubMed ID: 19044904 [TBL] [Abstract][Full Text] [Related]
28. DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the [FeFe] hydrogenase active site. Bertini L; Greco C; De Gioia L; Fantucci P J Phys Chem A; 2009 May; 113(19):5657-70. PubMed ID: 19378958 [TBL] [Abstract][Full Text] [Related]
29. Coupled-cluster studies of the lowest excited states of the 11-cis-retinal chromophore. Send R; Sundholm D Phys Chem Chem Phys; 2007 Jun; 9(22):2862-7. PubMed ID: 17538731 [TBL] [Abstract][Full Text] [Related]
30. Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory. Chiba M; Fedorov DG; Kitaura K J Comput Chem; 2008 Dec; 29(16):2667-76. PubMed ID: 18484637 [TBL] [Abstract][Full Text] [Related]
31. A dual-level approach to density-functional theory. Nakajima T; Hirao K J Chem Phys; 2006 May; 124(18):184108. PubMed ID: 16709098 [TBL] [Abstract][Full Text] [Related]
32. Relative energy of the high-(5T2g) and low-(1A1g) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 versus density functional theory. Pierloot K; Vancoillie S J Chem Phys; 2008 Jan; 128(3):034104. PubMed ID: 18205485 [TBL] [Abstract][Full Text] [Related]
33. Ab initio excited state properties and dynamics of a prototype sigma-bridged-donor-acceptor molecule. Tapavicza E; Tavernelli I; Rothlisberger U J Phys Chem A; 2009 Sep; 113(35):9595-602. PubMed ID: 19663389 [TBL] [Abstract][Full Text] [Related]
34. DFT and TDDFT study related to electron transfer in nonbonded porphine...C60 complexes. Toivonen TL; Hukka TI; Cramariuc O; Rantala TT; Lemmetyinen H J Phys Chem A; 2006 Nov; 110(44):12213-21. PubMed ID: 17078617 [TBL] [Abstract][Full Text] [Related]
35. Testing time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer states and potential energies near a conical intersection. Li SL; Truhlar DG J Chem Phys; 2014 Sep; 141(10):104106. PubMed ID: 25217903 [TBL] [Abstract][Full Text] [Related]
36. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation. Isegawa M; Truhlar DG J Chem Phys; 2013 Apr; 138(13):134111. PubMed ID: 23574212 [TBL] [Abstract][Full Text] [Related]
37. TDDFT diagnostic testing and functional assessment for triazene chromophores. Peach MJ; Le Sueur CR; Ruud K; Guillaume M; Tozer DJ Phys Chem Chem Phys; 2009 Jun; 11(22):4465-70. PubMed ID: 19475164 [TBL] [Abstract][Full Text] [Related]
38. On nonadiabatic coupling vectors in time-dependent density functional theory. Tavernelli I; Curchod BF; Rothlisberger U J Chem Phys; 2009 Nov; 131(19):196101. PubMed ID: 19929081 [TBL] [Abstract][Full Text] [Related]
39. Calculation of atomic excitation energies by time-dependent density functional theory within a modified linear response. Hu C; Sugino O; Tateyama Y J Phys Condens Matter; 2009 Feb; 21(6):064229. PubMed ID: 21715931 [TBL] [Abstract][Full Text] [Related]
40. On the calculation of general response properties in subsystem density functional theory. Neugebauer J J Chem Phys; 2009 Aug; 131(8):084104. PubMed ID: 19725605 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]