These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18161712)

  • 1. A pattern recognition based fluorescence quenching assay for the detection and identification of nitrated explosive analytes.
    Hughes AD; Glenn IC; Patrick AD; Ellington A; Anslyn EV
    Chemistry; 2008; 14(6):1822-7. PubMed ID: 18161712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent polymer sensor array for detection and discrimination of explosives in water.
    Woodka MD; Schnee VP; Polcha MP
    Anal Chem; 2010 Dec; 82(23):9917-24. PubMed ID: 21069967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching.
    Meaney MS; McGuffin VL
    Anal Chim Acta; 2008 Mar; 610(1):57-67. PubMed ID: 18267140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid detection of nitroaromatic and nitramine explosives on chromatographic paper and their reflectometric sensing on PVC tablets.
    Erçağ E; Uzer A; Eren S; Sağlam S; Filik H; Apak R
    Talanta; 2011 Sep; 85(4):2226-32. PubMed ID: 21872082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array.
    Peveler WJ; Roldan A; Hollingsworth N; Porter MJ; Parkin IP
    ACS Nano; 2016 Jan; 10(1):1139-46. PubMed ID: 26579950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of nitroaromatics and explosives mimics by a fluorescent Zn(salicylaldimine) sensor array.
    Germain ME; Knapp MJ
    J Am Chem Soc; 2008 Apr; 130(16):5422-3. PubMed ID: 18376839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-assisted array from fluorescent conjugated microporous polymers for multiple explosives recognition.
    Gao R; Wei XS; Zhao W; Xie A; Dong W
    Anal Chim Acta; 2022 Feb; 1192():339343. PubMed ID: 35057934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of organic compounds in aqueous solutions by chemiluminescence on an array of catalytic nanoparticles.
    Kong H; Zhang S; Na N; Liu D; Zhang X
    Analyst; 2009 Dec; 134(12):2441-6. PubMed ID: 19918614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of a minimal size sensor array for metal ion detection.
    Palacios MA; Wang Z; Montes VA; Zyryanov GV; Anzenbacher P
    J Am Chem Soc; 2008 Aug; 130(31):10307-14. PubMed ID: 18616249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT.
    Gao D; Wang Z; Liu B; Ni L; Wu M; Zhang Z
    Anal Chem; 2008 Nov; 80(22):8545-53. PubMed ID: 18847285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole-containing polymers.
    Toal SJ; Sanchez JC; Dugan RE; Trogler WC
    J Forensic Sci; 2007 Jan; 52(1):79-83. PubMed ID: 17209914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential receptor arrays and assays for solution-based molecular recognition.
    Wright AT; Anslyn EV
    Chem Soc Rev; 2006 Jan; 35(1):14-28. PubMed ID: 16365639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive.
    Tu R; Liu B; Wang Z; Gao D; Wang F; Fang Q; Zhang Z
    Anal Chem; 2008 May; 80(9):3458-65. PubMed ID: 18336012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy.
    Comanescu G; Manka CK; Grun J; Nikitin S; Zabetakis D
    Appl Spectrosc; 2008 Aug; 62(8):833-9. PubMed ID: 18702854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace detection of explosive particulates with a phosphole oxide.
    Shiraishi K; Sanji T; Tanaka M
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1379-82. PubMed ID: 20355938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate and transport of TNT, RDX, and HMX in streambed sediments: Implications for riverbank filtration.
    Zheng W; Lichwa J; D'Alessio M; Ray C
    Chemosphere; 2009 Aug; 76(9):1167-77. PubMed ID: 19619888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trends in explosive contamination.
    Oxley JC; Smith JL; Resende E; Pearce E; Chamberlain T
    J Forensic Sci; 2003 Mar; 48(2):334-42. PubMed ID: 12664991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable star-shaped triphenylamine fluorophores for fluorescence quenching detection and identification of nitro-aromatic explosives.
    Niamnont N; Kimpitak N; Wongravee K; Rashatasakhon P; Baldridge KK; Siegel JS; Sukwattanasinitt M
    Chem Commun (Camb); 2013 Jan; 49(8):780-2. PubMed ID: 23236601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors.
    You CC; Miranda OR; Gider B; Ghosh PS; Kim IB; Erdogan B; Krovi SA; Bunz UH; Rotello VM
    Nat Nanotechnol; 2007 May; 2(5):318-23. PubMed ID: 18654291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective spectrophotometric determination of TNT using a dicyclohexylamine-based colorimetric sensor.
    Erçağ E; Uzer A; Apak R
    Talanta; 2009 May; 78(3):772-80. PubMed ID: 19269427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.