These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18161802)

  • 21. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of segmented poly(esterurethane urea) elastomers for bone tissue engineering.
    Kavlock KD; Pechar TW; Hollinger JO; Guelcher SA; Goldstein AS
    Acta Biomater; 2007 Jul; 3(4):475-84. PubMed ID: 17418651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro degradation and biocompatibility of poly(DL-lactide-epsilon-caprolactone) nerve guides.
    Meek MF; Jansen K; Steendam R; van Oeveren W; van Wachem PB; van Luyn MJ
    J Biomed Mater Res A; 2004 Jan; 68(1):43-51. PubMed ID: 14661248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on L-lysine diisocyanate and L-lysine chain extender.
    Han J; Cao RW; Chen B; Ye L; Zhang AY; Zhang J; Feng ZG
    J Biomed Mater Res A; 2011 Mar; 96(4):705-14. PubMed ID: 21284079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro stability of a novel compliant poly(carbonate-urea)urethane to oxidative and hydrolytic stress.
    Salacinski HJ; Tai NR; Carson RJ; Edwards A; Hamilton G; Seifalian AM
    J Biomed Mater Res; 2002 Feb; 59(2):207-18. PubMed ID: 11745555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo kinetic degradation analysis and biocompatibility of aliphatic polyester polyurethanes.
    Knight PT; Kirk JT; Anderson JM; Mather PT
    J Biomed Mater Res A; 2010 Aug; 94(2):333-43. PubMed ID: 20583334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase.
    Christenson EM; Patel S; Anderson JM; Hiltner A
    Biomaterials; 2006 Jul; 27(21):3920-6. PubMed ID: 16600363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trypsin-inspired poly(urethane-urea)s based on poly-lysine oligomer segment.
    Gu Z; Wang F; Lu H; Wang X; Zheng Z
    J Biomater Sci Polym Ed; 2015; 26(5):311-21. PubMed ID: 25584962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun biodegradable calcium containing poly(ester-urethane)urea: synthesis, fabrication, in vitro degradation, and biocompatibility evaluation.
    Nair PA; Ramesh P
    J Biomed Mater Res A; 2013 Jul; 101(7):1876-87. PubMed ID: 23712992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of soft segment chemistry on the biostability of segmented polyurethanes. II. In vitro hydrolytic degradation and lipid sorption.
    Takahara A; Hergenrother RW; Coury AJ; Cooper SL
    J Biomed Mater Res; 1992 Jun; 26(6):801-18. PubMed ID: 1527102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanical and microscopic aspects of the deformation and fracture of a poly (ether urethane-urea) spun arterial prosthesis.
    Williams DF; Zhong SP; Doherty PJ
    Biomed Mater Eng; 1991; 1(2):75-90. PubMed ID: 1364633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shape Memory Properties and Enzymatic Degradability of Poly(ε-caprolactone)-Based Polyurethane Urea Containing Phenylalanine-Derived Chain Extender.
    Wang R; Zhang F; Lin W; Liu W; Li J; Luo F; Wang Y; Tan H
    Macromol Biosci; 2018 Jun; 18(6):e1800054. PubMed ID: 29687605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of hard segment size on the hydrolytic stability of polyether-urea-urethanes when exposed to cholesterol esterase.
    Santerre JP; Labow RS
    J Biomed Mater Res; 1997 Aug; 36(2):223-32. PubMed ID: 9261684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content.
    Meng Q; Hu J; Zhu Y
    J Biomater Sci Polym Ed; 2008; 19(11):1437-54. PubMed ID: 18973722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of clinical explants and accelerated hydrolytic aging to improve biostability assessment of silicone-based polyurethanes.
    Cosgriff-Hernandez E; Tkatchouk E; Touchet T; Sears N; Kishan A; Jenney C; Padsalgikar AD; Chen E
    J Biomed Mater Res A; 2016 Jul; 104(7):1805-16. PubMed ID: 26990709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.