These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 18161811)
1. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. Ghosh SK; Nandi SK; Kundu B; Datta S; De DK; Roy SK; Basu D J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):217-27. PubMed ID: 18161811 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260 [TBL] [Abstract][Full Text] [Related]
3. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Xin R; Leng Y; Chen J; Zhang Q Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid. Hirakata LM; Kon M; Asaoka K Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174 [TBL] [Abstract][Full Text] [Related]
5. Ultrastructure of ceramic-bone interface using hydroxyapatite and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone. Fujita R; Yokoyama A; Nodasaka Y; Kohgo T; Kawasaki T Tissue Cell; 2003 Dec; 35(6):427-40. PubMed ID: 14580356 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate. Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565 [TBL] [Abstract][Full Text] [Related]
7. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415 [TBL] [Abstract][Full Text] [Related]
8. Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate. Vani R; Girija EK; Elayaraja K; Prakash Parthiban S; Kesavamoorthy R; Narayana Kalkura S J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S43-8. PubMed ID: 18560768 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Alam MI; Asahina I; Ohmamiuda K; Takahashi K; Yokota S; Enomoto S Biomaterials; 2001 Jun; 22(12):1643-51. PubMed ID: 11374466 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes. Alam I; Asahina I; Ohmamiuda K; Enomoto S J Biomed Mater Res; 2001 Jan; 54(1):129-38. PubMed ID: 11077412 [TBL] [Abstract][Full Text] [Related]
11. The fabrication and biochemical evaluation of alumina reinforced calcium phosphate porous implants. Jun YK; Kim WH; Kweon OK; Hong SH Biomaterials; 2003 Sep; 24(21):3731-9. PubMed ID: 12818545 [TBL] [Abstract][Full Text] [Related]
12. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth. Li XW; Yasuda HY; Umakoshi Y J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357 [TBL] [Abstract][Full Text] [Related]
13. Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates. Okanoue Y; Ikeuchi M; Takemasa R; Tani T; Matsumoto T; Sakamoto M; Nakasu M Arch Orthop Trauma Surg; 2012 Nov; 132(11):1603-10. PubMed ID: 22760581 [TBL] [Abstract][Full Text] [Related]
14. In vitro stability of biphasic calcium phosphate ceramics. Kohri M; Miki K; Waite DE; Nakajima H; Okabe T Biomaterials; 1993; 14(4):299-304. PubMed ID: 8386558 [TBL] [Abstract][Full Text] [Related]
15. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics. França R; Samani TD; Bayade G; Yahia L; Sacher E J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717 [TBL] [Abstract][Full Text] [Related]
16. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics. Kong YM; Kim HE; Kim HW J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):334-9. PubMed ID: 17595029 [TBL] [Abstract][Full Text] [Related]
17. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass. Behnamghader A; Bagheri N; Raissi B; Moztarzadeh F J Mater Sci Mater Med; 2008 Jan; 19(1):197-201. PubMed ID: 17597356 [TBL] [Abstract][Full Text] [Related]
18. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
19. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder. Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications. Ribeiro CC; Barrias CC; Barbosa MA J Mater Sci Mater Med; 2006 May; 17(5):455-63. PubMed ID: 16688586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]