BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 18161819)

  • 1. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration.
    Brown JL; Nair LS; Laurencin CT
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):396-406. PubMed ID: 18161819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering.
    Nukavarapu SP; Kumbar SG; Brown JL; Krogman NR; Weikel AL; Hindenlang MD; Nair LS; Allcock HR; Laurencin CT
    Biomacromolecules; 2008 Jul; 9(7):1818-25. PubMed ID: 18517248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair.
    Borden M; El-Amin SF; Attawia M; Laurencin CT
    Biomaterials; 2003 Feb; 24(4):597-609. PubMed ID: 12437954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.
    Jiang T; Abdel-Fattah WI; Laurencin CT
    Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).
    Kempen DH; Lu L; Kim C; Zhu X; Dhert WJ; Currier BL; Yaszemski MJ
    J Biomed Mater Res A; 2006 Apr; 77(1):103-11. PubMed ID: 16392139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel factor-loaded polyphosphazene matrices: potential for driving angiogenesis.
    Oredein-McCoy O; Krogman NR; Weikel AL; Hindenlang MD; Allcock HR; Laurencin CT
    J Microencapsul; 2009 Sep; 26(6):544-55. PubMed ID: 18972247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide.
    Jeon JH; Bhamidipati M; Sridharan B; Scurto AM; Berkland CJ; Detamore MS
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):330-7. PubMed ID: 23115065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.
    Jabbarzadeh E; Deng M; Lv Q; Jiang T; Khan YM; Nair LS; Laurencin CT
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2187-96. PubMed ID: 22915492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel tubular composite matrix for bone repair.
    Kofron MD; Cooper JA; Kumbar SG; Laurencin CT
    J Biomed Mater Res A; 2007 Aug; 82(2):415-25. PubMed ID: 17295242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of 3D PCL microsphere/TiO
    Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.
    Jiang T; Nukavarapu SP; Deng M; Jabbarzadeh E; Kofron MD; Doty SB; Abdel-Fattah WI; Laurencin CT
    Acta Biomater; 2010 Sep; 6(9):3457-70. PubMed ID: 20307694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering.
    Hu X; He J; Yong X; Lu J; Xiao J; Liao Y; Li Q; Xiong C
    Colloids Surf B Biointerfaces; 2020 Nov; 195():111218. PubMed ID: 32650218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring properties of microsphere-based poly(lactic-co-glycolic acid) scaffolds.
    Clark A; Milbrandt TA; Hilt JZ; Puleo DA
    J Biomed Mater Res A; 2014 Feb; 102(2):348-57. PubMed ID: 23533090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering.
    Singh M; Morris CP; Ellis RJ; Detamore MS; Berkland C
    Tissue Eng Part C Methods; 2008 Dec; 14(4):299-309. PubMed ID: 18795865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable delivery of non-viral DNA from porous scaffolds.
    Jang JH; Shea LD
    J Control Release; 2003 Jan; 86(1):157-68. PubMed ID: 12490381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent.
    Singh M; Sandhu B; Scurto A; Berkland C; Detamore MS
    Acta Biomater; 2010 Jan; 6(1):137-43. PubMed ID: 19660579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, fabrication, and characterization of a composite scaffold for bone tissue engineering.
    Boschetti F; Tomei AA; Turri S; Swartz MA; Levi M
    Int J Artif Organs; 2008 Aug; 31(8):697-707. PubMed ID: 18825642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.