BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18161819)

  • 21. From solvent-free microspheres to bioactive gradient scaffolds.
    Rasoulianboroujeni M; Yazdimamaghani M; Khoshkenar P; Pothineni VR; Kim KM; Murray TA; Rajadas J; Mills DK; Vashaee D; Moharamzadeh K; Tayebi L
    Nanomedicine; 2017 Apr; 13(3):1157-1169. PubMed ID: 27793788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid vacuum sintering: A novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering.
    Denry I; Goudouri OM; Harless J; Holloway JA
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):291-299. PubMed ID: 28135032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly-L-lactide/sodium alginate/chitosan microsphere hybrid scaffolds made with braiding manufacture and adhesion technique: Solution to the incongruence between porosity and compressive strength.
    Lin JH; Chen CK; Wen SP; Lou CW
    Mater Sci Eng C Mater Biol Appl; 2015; 52():111-20. PubMed ID: 25953547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering.
    Kolan KC; Leu MC; Hilmas GE; Brown RF; Velez M
    Biofabrication; 2011 Jun; 3(2):025004. PubMed ID: 21636879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.
    Jabbarzadeh E; Jiang T; Deng M; Nair LS; Khan YM; Laurencin CT
    Biotechnol Bioeng; 2007 Dec; 98(5):1094-102. PubMed ID: 17497742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering.
    Jung Y; Kim SS; Kim YH; Kim SH; Kim BS; Kim S; Choi CY; Kim SH
    Biomaterials; 2005 Nov; 26(32):6314-22. PubMed ID: 15913759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solvent-cast 3D printing of magnesium scaffolds.
    Dong J; Li Y; Lin P; Leeflang MA; van Asperen S; Yu K; Tümer N; Norder B; Zadpoor AA; Zhou J
    Acta Biomater; 2020 Sep; 114():497-514. PubMed ID: 32771594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymer-coated microparticle scaffolds engineered for potential use in musculoskeletal tissue regeneration.
    Samandi G; Gupta V; Mohan N; McHugh P; Berkland C; Detamore M; Lohfeld S
    Biomed Mater; 2021 May; 16(4):. PubMed ID: 33946056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physicomechanical properties of sintered scaffolds formed from porous and protein-loaded poly(DL-lactic-co-glycolic acid) microspheres for potential use in bone tissue engineering.
    Boukari Y; Scurr DJ; Qutachi O; Morris AP; Doughty SW; Rahman CV; Billa N
    J Biomater Sci Polym Ed; 2015; 26(12):796-811. PubMed ID: 26065672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue engineered microsphere-based matrices for bone repair: design and evaluation.
    Borden M; Attawia M; Khan Y; Laurencin CT
    Biomaterials; 2002 Jan; 23(2):551-9. PubMed ID: 11761175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering.
    Francis L; Meng D; Knowles JC; Roy I; Boccaccini AR
    Acta Biomater; 2010 Jul; 6(7):2773-86. PubMed ID: 20056174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies.
    Borden M; Attawia M; Laurencin CT
    J Biomed Mater Res; 2002 Sep; 61(3):421-9. PubMed ID: 12115467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies.
    Cushnie EK; Khan YM; Laurencin CT
    J Biomed Mater Res A; 2008 Jan; 84(1):54-62. PubMed ID: 17600320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen.
    Tang G; Zhang H; Zhao Y; Zhang Y; Li X; Yuan X
    J Biomater Sci Polym Ed; 2012; 23(17):2241-57. PubMed ID: 22137329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds.
    Cushnie EK; Khan YM; Laurencin CT
    J Biomed Mater Res A; 2010 Aug; 94(2):568-75. PubMed ID: 20198692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption.
    Jabbarzadeh E; Nair LS; Khan YM; Deng M; Laurencin CT
    J Biomater Sci Polym Ed; 2007; 18(9):1141-52. PubMed ID: 17931504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solvent-assisted room-temperature compression molding approach to fabricate porous scaffolds for tissue engineering.
    Jing D; Wu L; Ding J
    Macromol Biosci; 2006 Sep; 6(9):747-57. PubMed ID: 16967479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective laser sintering of porous tissue engineering scaffolds from poly(L: -lactide)/carbonated hydroxyapatite nanocomposite microspheres.
    Zhou WY; Lee SH; Wang M; Cheung WL; Ip WY
    J Mater Sci Mater Med; 2008 Jul; 19(7):2535-40. PubMed ID: 17619975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microsphere-Based Scaffolds in Regenerative Engineering.
    Gupta V; Khan Y; Berkland CJ; Laurencin CT; Detamore MS
    Annu Rev Biomed Eng; 2017 Jun; 19():135-161. PubMed ID: 28633566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.