BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 18161988)

  • 1. Threonine-509 is a determinant of apparent affinity for both substrate and cations in the human Na+/dicarboxylate cotransporter.
    Weerachayaphorn J; Pajor AM
    Biochemistry; 2008 Jan; 47(3):1087-93. PubMed ID: 18161988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Functionally Important Residues in the Na
    Colas C; Schlessinger A; Pajor AM
    Biochemistry; 2017 Aug; 56(33):4432-4441. PubMed ID: 28731330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane helix 7 in the Na+/dicarboxylate cotransporter 1 is an outer helix that contains residues critical for function.
    Pajor AM; Sun NN; Joshi AD; Randolph KM
    Biochim Biophys Acta; 2011 Jun; 1808(6):1454-61. PubMed ID: 21073858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane helices 3 and 4 are involved in substrate recognition by the Na+/dicarboxylate cotransporter, NaDC1.
    Oshiro N; King SC; Pajor AM
    Biochemistry; 2006 Feb; 45(7):2302-10. PubMed ID: 16475819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of isoleucine-554 in lithium binding by the Na+/dicarboxylate cotransporter NaDC1.
    Pajor AM; Sun NN
    Biochemistry; 2010 Oct; 49(41):8937-43. PubMed ID: 20845974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformationally sensitive residues in extracellular loop 5 of the Na+/dicarboxylate co-transporter.
    Pajor AM; Randolph KM
    J Biol Chem; 2005 May; 280(19):18728-35. PubMed ID: 15774465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of substrate and cation affinities in the Na+/dicarboxylate cotransporter.
    Kahn ES; Pajor AM
    Biochemistry; 1999 May; 38(19):6151-6. PubMed ID: 10320342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane topology structure of human high-affinity, sodium-dependent dicarboxylate transporter.
    Bai XY; Chen X; Sun AQ; Feng Z; Hou K; Fu B
    FASEB J; 2007 Aug; 21(10):2409-17. PubMed ID: 17426067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3.
    Schlessinger A; Sun NN; Colas C; Pajor AM
    J Biol Chem; 2014 Jun; 289(24):16998-7008. PubMed ID: 24808185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single nucleotide polymorphisms in the human Na+-dicarboxylate cotransporter affect transport activity and protein expression.
    Pajor AM; Sun NN
    Am J Physiol Renal Physiol; 2010 Oct; 299(4):F704-11. PubMed ID: 20610529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of conserved prolines in the structure and function of the Na+/dicarboxylate cotransporter 1, NaDC1.
    Joshi AD; Pajor AM
    Biochemistry; 2006 Apr; 45(13):4231-9. PubMed ID: 16566597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential interaction of dicarboxylates with human sodium-dicarboxylate cotransporter 3 and organic anion transporters 1 and 3.
    Kaufhold M; Schulz K; Breljak D; Gupta S; Henjakovic M; Krick W; Hagos Y; Sabolic I; Burckhardt BC; Burckhardt G
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1026-34. PubMed ID: 21865262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of the calcium-regulated citrate transport process in proximal tubule cells.
    Hering-Smith KS; Mao W; Schiro FR; Coleman-Barnett J; Pajor AM; Hamm LL
    Urolithiasis; 2014 Jun; 42(3):209-19. PubMed ID: 24652587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions.
    Burckhardt BC; Lorenz J; Kobbe C; Burckhardt G
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F792-9. PubMed ID: 15561973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of transport pathways for citric acid cycle intermediates in the human colon carcinoma cell line, Caco-2.
    Weerachayaphorn J; Pajor AM
    Biochim Biophys Acta; 2008 Apr; 1778(4):1051-9. PubMed ID: 18194662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span.
    Fei YJ; Inoue K; Ganapathy V
    J Biol Chem; 2003 Feb; 278(8):6136-44. PubMed ID: 12480943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, maturation, and trafficking of human Na+-dicarboxylate cotransporter NaDC1 requires the chaperone activity of cyclophilin B.
    Bergeron MJ; Bürzle M; Kovacs G; Simonin A; Hediger MA
    J Biol Chem; 2011 Apr; 286(13):11242-53. PubMed ID: 21257749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine-349 and aspartate-373 of the Na(+)/dicarboxylate cotransporter are conformationally sensitive residues.
    Yao X; Pajor AM
    Biochemistry; 2002 Jan; 41(3):1083-90. PubMed ID: 11790133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the Na+/dicarboxylate cotransporter by anthranilic acid derivatives.
    Pajor AM; Randolph KM
    Mol Pharmacol; 2007 Nov; 72(5):1330-6. PubMed ID: 17715401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.