BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18162163)

  • 41. NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle.
    Kosciuk T; Price IR; Zhang X; Zhu C; Johnson KN; Zhang S; Halaby SL; Komaniecki GP; Yang M; DeHart CJ; Thomas PM; Kelleher NL; Fromme JC; Lin H
    Nat Commun; 2020 Feb; 11(1):1067. PubMed ID: 32103017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FRET-based analysis and molecular modeling of the human GPN-loop GTPases 1 and 3 heterodimer unveils a dominant-negative protein complex.
    Cristóbal-Mondragón GR; Lara-Chacón B; Santiago Á; De-la-Rosa V; González-González R; Muñiz-Luna JA; Ladrón-de-Guevara E; Romero-Romero S; Rangel-Yescas GE; Fernández Velasco DA; Islas LD; Pastor N; Sánchez-Olea R; Calera MR
    FEBS J; 2019 Dec; 286(23):4797-4818. PubMed ID: 31298811
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Imaging spatiotemporal dynamics of Rac activation in vivo with FLAIR.
    Chamberlain CE; Kraynov VS; Hahn KM
    Methods Enzymol; 2000; 325():389-400. PubMed ID: 11036621
    [No Abstract]   [Full Text] [Related]  

  • 44. [Versatile in vivo functions of the small GTPase Arf6].
    Hongu T; Kanaho Y
    Seikagaku; 2016 Feb; 88(1):78-85. PubMed ID: 27025010
    [No Abstract]   [Full Text] [Related]  

  • 45. A FRET-based screening method to detect potential inhibitors of the binding of CNNM3 to PRL2.
    Cai F; Huang Y; Wang M; Sun M; Zhao Y; Hattori M
    Sci Rep; 2020 Jul; 10(1):12879. PubMed ID: 32733084
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visualization of the Activity of Rac1 Small GTPase in a Cell.
    Higashi M; Yu J; Tsuchiya H; Saito T; Oyama T; Kawana H; Kitagawa M; Tamaru J; Harigaya K
    Acta Histochem Cytochem; 2010 Dec; 43(6):163-8. PubMed ID: 21245983
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapidly relocating molecules between organelles to manipulate small GTPase activity.
    Phua SC; Pohlmeyer C; Inoue T
    ACS Chem Biol; 2012 Dec; 7(12):1950-5. PubMed ID: 22999378
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inconspicuous consumption: uncovering the molecular pathways behind phagocytosis.
    Inman M
    PLoS Biol; 2006 Jun; 4(6):e190. PubMed ID: 20076587
    [No Abstract]   [Full Text] [Related]  

  • 49. In vivo monitoring of plant small GTPase activation using a Förster resonance energy transfer biosensor.
    Wong HL; Akamatsu A; Wang Q; Higuchi M; Matsuda T; Okuda J; Kosami KI; Inada N; Kawasaki T; Kaneko-Kawano T; Nagawa S; Tan L; Kawano Y; Shimamoto K
    Plant Methods; 2018; 14():56. PubMed ID: 30002723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A luminescent oxygen channeling biosensor that measures small GTPase activation.
    Niebel B; Weiche B; Mueller AL; Li DY; Karnowski N; Famulok M
    Chem Commun (Camb); 2011 Jul; 47(26):7521-3. PubMed ID: 21625685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Various applications of fluorescent proteins for cell biology].
    Nagai T
    Seikagaku; 2006 Aug; 78(8):759-63. PubMed ID: 16986726
    [No Abstract]   [Full Text] [Related]  

  • 52. A genetically encoded photoactivatable Rac controls the motility of living cells.
    Wu YI; Frey D; Lungu OI; Jaehrig A; Schlichting I; Kuhlman B; Hahn KM
    Nature; 2009 Sep; 461(7260):104-8. PubMed ID: 19693014
    [TBL] [Abstract][Full Text] [Related]  

  • 53. HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging.
    Bilan DS; Pase L; Joosen L; Gorokhovatsky AY; Ermakova YG; Gadella TW; Grabher C; Schultz C; Lukyanov S; Belousov VV
    ACS Chem Biol; 2013 Mar; 8(3):535-42. PubMed ID: 23256573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A rapid method to determine the orientation of blunt end ligated polymerase chain reaction products.
    Dooley S; Seib T; Engel M; Welter C
    Electrophoresis; 1993 Jul; 14(7):662-3. PubMed ID: 8397081
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix.
    Manzer KM; Fromme JC
    Mol Biol Cell; 2023 Nov; 34(12):ar119. PubMed ID: 37672345
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix.
    Manzer KM; Fromme JC
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546741
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellular Plasticity during Metastasis: New Insights Provided by Intravital Microscopy.
    Margarido AS; Bornes L; Vennin C; van Rheenen J
    Cold Spring Harb Perspect Med; 2020 Nov; 10(11):. PubMed ID: 31615867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism.
    Marquer C; Tian H; Yi J; Bastien J; Dall'Armi C; Yang-Klingler Y; Zhou B; Chan RB; Di Paolo G
    Nat Commun; 2016 Jun; 7():11919. PubMed ID: 27336679
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RLIP76 regulates Arf6-dependent cell spreading and migration by linking ARNO with activated R-Ras at recycling endosomes.
    Wurtzel JG; Lee S; Singhal SS; Awasthi S; Ginsberg MH; Goldfinger LE
    Biochem Biophys Res Commun; 2015 Nov; 467(4):785-91. PubMed ID: 26498519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The cytohesin coiled-coil domain interacts with threonine 276 to control membrane association.
    Hiester KG; Santy LC
    PLoS One; 2013; 8(11):e82084. PubMed ID: 24303080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.