These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1250 related articles for article (PubMed ID: 18163467)

  • 21. Applications of fluorescence lifetime spectroscopy and imaging to lipid domains in vivo.
    Bastos AE; Scolari S; Stöckl M; Almeida RF
    Methods Enzymol; 2012; 504():57-81. PubMed ID: 22264529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualizing lipid structure and raft domains in living cells with two-photon microscopy.
    Gaus K; Gratton E; Kable EP; Jones AS; Gelissen I; Kritharides L; Jessup W
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15554-9. PubMed ID: 14673117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific and distinct determinants mediate membrane binding and lipid raft incorporation of HIV-1(SF2) Nef.
    Giese SI; Woerz I; Homann S; Tibroni N; Geyer M; Fackler OT
    Virology; 2006 Nov; 355(2):175-91. PubMed ID: 16916529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy.
    Kahya N; Scherfeld D; Bacia K; Schwille P
    J Struct Biol; 2004 Jul; 147(1):77-89. PubMed ID: 15109608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Internalization of Pseudomonas aeruginosa is mediated by lipid rafts in contact lens-wearing rabbit and cultured human corneal epithelial cells.
    Yamamoto N; Yamamoto N; Petroll MW; Cavanagh HD; Jester JV
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1348-55. PubMed ID: 15790901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching.
    Adkins EM; Samuvel DJ; Fog JU; Eriksen J; Jayanthi LD; Vaegter CB; Ramamoorthy S; Gether U
    Biochemistry; 2007 Sep; 46(37):10484-97. PubMed ID: 17711354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imaging lipid membrane domains with lipid-specific probes.
    Hullin-Matsuda F; Ishitsuka R; Takahashi M; Kobayashi T
    Methods Mol Biol; 2009; 580():203-20. PubMed ID: 19784601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells.
    Dalskov SM; Immerdal L; Niels-Christiansen LL; Hansen GH; Schousboe A; Danielsen EM
    Neurochem Int; 2005 May; 46(6):489-99. PubMed ID: 15769551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and function of lipid rafts in human activated T cells.
    Tani-ichi S; Maruyama K; Kondo N; Nagafuku M; Kabayama K; Inokuchi J; Shimada Y; Ohno-Iwashita Y; Yagita H; Kawano S; Kosugi A
    Int Immunol; 2005 Jun; 17(6):749-58. PubMed ID: 15967787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Critical role of lipid rafts in virus entry and activation of phosphoinositide 3' kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells.
    Das S; Chakraborty S; Basu A
    J Neurochem; 2010 Oct; 115(2):537-49. PubMed ID: 20722967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reorganization of lipid rafts during capacitation of human sperm.
    Cross NL
    Biol Reprod; 2004 Oct; 71(4):1367-73. PubMed ID: 15215196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The nutritional significance of lipid rafts.
    Yaqoob P
    Annu Rev Nutr; 2009; 29():257-82. PubMed ID: 19400697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential insertion of GPI-anchored GFPs into lipid rafts of live cells.
    Legler DF; Doucey MA; Schneider P; Chapatte L; Bender FC; Bron C
    FASEB J; 2005 Jan; 19(1):73-5. PubMed ID: 15516372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins.
    Viola A; Gupta N
    Nat Rev Immunol; 2007 Nov; 7(11):889-96. PubMed ID: 17948020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholesterol sensitivity of endogenous and myristoylated Akt.
    Adam RM; Mukhopadhyay NK; Kim J; Di Vizio D; Cinar B; Boucher K; Solomon KR; Freeman MR
    Cancer Res; 2007 Jul; 67(13):6238-46. PubMed ID: 17616681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and cholesterol dynamics of caveolae/raft and nonraft plasma membrane domains.
    Gallegos AM; Storey SM; Kier AB; Schroeder F; Ball JM
    Biochemistry; 2006 Oct; 45(39):12100-16. PubMed ID: 17002310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and biochemical characterisation of lipid rafts from Atlantic cod (Gadus morhua) intestinal enterocytes.
    Gylfason GA; Knútsdóttir E; Asgeirsson B
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Jan; 155(1):86-95. PubMed ID: 19854289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging.
    de Almeida RF; Loura LM; Prieto M
    Chem Phys Lipids; 2009 Feb; 157(2):61-77. PubMed ID: 18723009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caveolin-1 and lipid rafts in confluent BeWo trophoblasts: evidence for Rock-1 association with caveolin-1.
    Rashid-Doubell F; Tannetta D; Redman CW; Sargent IL; Boyd CA; Linton EA
    Placenta; 2007; 28(2-3):139-51. PubMed ID: 16480767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lysophospholipids prevent binding of a cytolytic protein ostreolysin to cholesterol-enriched membrane domains.
    Chowdhury HH; Rebolj K; Kreft M; Zorec R; Macek P; Sepcić K
    Toxicon; 2008 Jun; 51(8):1345-56. PubMed ID: 18455213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 63.