These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18163574)

  • 1. Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response.
    Hsu SH; Tang CM; Tseng HJ
    Biomacromolecules; 2008 Jan; 9(1):241-8. PubMed ID: 18163574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of poly(ether)urethane-gold nanocomposites.
    Hsu SH; Tang CM; Tseng HJ
    J Biomed Mater Res A; 2006 Dec; 79(4):759-70. PubMed ID: 16871514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biostability and biocompatibility of poly(ester urethane)-gold nanocomposites.
    Hsu SH; Tang CM; Tseng HJ
    Acta Biomater; 2008 Nov; 4(6):1797-808. PubMed ID: 18657493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites.
    Hsu SH; Tseng HJ; Lin YC
    Biomaterials; 2010 Sep; 31(26):6796-808. PubMed ID: 20542329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biostability and biocompatibility of poly(ether)urethane containing gold or silver nanoparticles in a porcine model.
    Chou CW; Hsu SH; Wang PH
    J Biomed Mater Res A; 2008 Mar; 84(3):785-94. PubMed ID: 17635027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The behavior of endothelial cells on polyurethane nanocomposites and the associated signaling pathways.
    Hung HS; Wu CC; Chien S; Hsu SH
    Biomaterials; 2009 Mar; 30(8):1502-11. PubMed ID: 19118895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of human endothelial progenitor cell maturation by polyurethane nanocomposites.
    Hung HS; Yang YC; Lin YC; Lin SZ; Kao WC; Hsieh HH; Chu MY; Fu RH; Hsu SH
    Biomaterials; 2014 Aug; 35(25):6810-21. PubMed ID: 24836305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The response of endothelial cells to polymer surface composed of nanometric micelles.
    Hung HS; Hsu SH
    N Biotechnol; 2009 Apr; 25(4):235-43. PubMed ID: 19429543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites.
    Hess C; Schwenke A; Wagener P; Franzka S; Laszlo Sajti C; Pflaum M; Wiegmann B; Haverich A; Barcikowski S
    J Biomed Mater Res A; 2014 Jun; 102(6):1909-20. PubMed ID: 23852964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment.
    Li D; He Q; Cui Y; Wang K; Zhang X; Li J
    Chemistry; 2007; 13(8):2224-9. PubMed ID: 17154319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The response of articular chondrocytes to type II collagen-Au nanocomposites.
    Hsu SH; Yen HJ; Tsai CL
    Artif Organs; 2007 Dec; 31(12):854-68. PubMed ID: 17924990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive effect of gold nanoparticles encapsulated inside polyamidoamine (PAMAM) dendrimers on electrochemistry of myoglobin (Mb) in {PAMAM-Au/Mb}(n) layer-by-layer films.
    Zhang H; Hu N
    J Phys Chem B; 2007 Sep; 111(35):10583-90. PubMed ID: 17696471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions.
    Tsang M; Chun YW; Im YM; Khang D; Webster TJ
    Tissue Eng Part A; 2011 Jul; 17(13-14):1879-89. PubMed ID: 21417694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biocompatibility and antimicrobial activity of nanocomposites from polyurethane and nano silicate platelets.
    Tseng HJ; Lin JJ; Ho TT; Tseng SM; Hsu SH
    J Biomed Mater Res A; 2011 Nov; 99(2):192-202. PubMed ID: 21976444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative In vitro evaluation of two different preparations of small diameter polyurethane vascular grafts.
    Hsu Sh; Tseng Hj; Wu Ms
    Artif Organs; 2000 Feb; 24(2):119-28. PubMed ID: 10718765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.
    Ganji Y; Kasra M; Salahshour Kordestani S; Bagheri Hariri M
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():341-9. PubMed ID: 25063127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization, antimicrobial activities, and biocompatibility of organically modified clays and their nanocomposites with polyurethane.
    Wang MC; Lin JJ; Tseng HJ; Hsu SH
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):338-50. PubMed ID: 22128903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and biocompatibility of chitosan nanocomposites.
    Hsu SH; Chang YB; Tsai CL; Fu KY; Wang SH; Tseng HJ
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):198-206. PubMed ID: 21435843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance biosensor based on water-soluble ZnO-Au nanocomposites.
    Wang L; Wang J; Zhang S; Sun Y; Zhu X; Cao Y; Wang X; Zhang H; Song D
    Anal Chim Acta; 2009 Oct; 653(1):109-15. PubMed ID: 19800482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.