These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18163579)

  • 1. Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood.
    Clair B; Gril J; Di Renzo F; Yamamoto H; Quignard F
    Biomacromolecules; 2008 Feb; 9(2):494-8. PubMed ID: 18163579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporosity as a new parameter for understanding tension stress generation in trees.
    Chang SS; Clair B; Ruelle J; Beauchêne J; Di Renzo F; Quignard F; Zhao GJ; Yamamoto H; Gril J
    J Exp Bot; 2009; 60(11):3023-30. PubMed ID: 19436045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silica nanocasts of wood fibers: a study of cell-wall accessibility and structure.
    Persson PV; Hafrén J; Fogden A; Daniel G; Iversen T
    Biomacromolecules; 2004; 5(3):1097-101. PubMed ID: 15132704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of drying on wood ultrastructure: similarities in cell wall alteration between native wood and isolated wood-based fibers.
    Suchy M; Kontturi E; Vuorinen T
    Biomacromolecules; 2010 Aug; 11(8):2161-8. PubMed ID: 20614934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization.
    Lichtenegger H; Reiterer A; Stanzl-Tschegg SE; Fratzl P
    J Struct Biol; 1999 Dec; 128(3):257-69. PubMed ID: 10633065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections.
    Gierlinger N; Goswami L; Schmidt M; Burgert I; Coutand C; Rogge T; Schwanninger M
    Biomacromolecules; 2008 Aug; 9(8):2194-201. PubMed ID: 18636773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling polymer interactions of the 'molecular Velcro' type in wood under mechanical stress.
    Altaner CM; Jarvis MC
    J Theor Biol; 2008 Aug; 253(3):434-45. PubMed ID: 18485371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer.
    Goswami L; Dunlop JW; Jungnikl K; Eder M; Gierlinger N; Coutand C; Jeronimidis G; Fratzl P; Burgert I
    Plant J; 2008 Nov; 56(4):531-8. PubMed ID: 18643995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction.
    Schreiber N; Gierlinger N; Pütz N; Fratzl P; Neinhuis C; Burgert I
    Plant J; 2010 Mar; 61(5):854-61. PubMed ID: 20030750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar--a glimpse into the mechanism of the balancing act of trees.
    Nishikubo N; Awano T; Banasiak A; Bourquin V; Ibatullin F; Funada R; Brumer H; Teeri TT; Hayashi T; Sundberg B; Mellerowicz EJ
    Plant Cell Physiol; 2007 Jun; 48(6):843-55. PubMed ID: 17504814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered wettability in tree capillaries.
    Kohonen MM
    Langmuir; 2006 Mar; 22(7):3148-53. PubMed ID: 16548570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping.
    Chantuma P; Lacointe A; Kasemsap P; Thanisawanyangkura S; Gohet E; Clément A; Guilliot A; Améglio T; Thaler P
    Tree Physiol; 2009 Aug; 29(8):1021-31. PubMed ID: 19556234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy.
    Rafsanjani A; Stiefel M; Jefimovs K; Mokso R; Derome D; Carmeliet J
    J R Soc Interface; 2014 Jun; 11(95):20140126. PubMed ID: 24671938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy.
    Gierlinger N; Schwanninger M; Reinecke A; Burgert I
    Biomacromolecules; 2006 Jul; 7(7):2077-81. PubMed ID: 16827572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress.
    Roussel JR; Clair B
    Tree Physiol; 2015 Dec; 35(12):1366-77. PubMed ID: 26427915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of the structural change during deformation in Cryptomeria japonica by time-resolved synchrotron small-angle X-ray scattering.
    Kamiyama T; Suzuki H; Sugiyama J
    J Struct Biol; 2005 Jul; 151(1):1-11. PubMed ID: 15963733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunolocalization of (1,4)-beta-galactan in tension wood fibers of poplar.
    Arend M
    Tree Physiol; 2008 Aug; 28(8):1263-7. PubMed ID: 18519257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress.
    Lu S; Li L; Yi X; Joshi CP; Chiang VL
    J Exp Bot; 2008; 59(3):681-95. PubMed ID: 18281718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics.
    Iwamoto S; Abe K; Yano H
    Biomacromolecules; 2008 Mar; 9(3):1022-6. PubMed ID: 18247566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood.
    Korkut DS; Guller B
    Bioresour Technol; 2008 May; 99(8):2846-51. PubMed ID: 17698357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.