These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 18163623)

  • 1. Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization.
    Chanmanee W; Watcharenwong A; Chenthamarakshan CR; Kajitvichyanukul P; de Tacconi NR; Rajeshwar K
    J Am Chem Soc; 2008 Jan; 130(3):965-74. PubMed ID: 18163623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and growth mechanism of multilayer TiO2 nanotube arrays.
    Guan D; Wang Y
    Nanoscale; 2012 Apr; 4(9):2968-77. PubMed ID: 22460605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays.
    Shin Y; Lee S
    Nanotechnology; 2009 Mar; 20(10):105301. PubMed ID: 19417516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis.
    Sreekantan S; Saharudin KA; Lockman Z; Tzu TW
    Nanotechnology; 2010 Sep; 21(36):365603. PubMed ID: 20705970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled TiO(2) nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening.
    Yoriya S; Grimes CA
    Langmuir; 2010 Jan; 26(1):417-20. PubMed ID: 20038179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response.
    de Tacconi NR; Chenthamarakshan CR; Yogeeswaran G; Watcharenwong A; de Zoysa RS; Basit NA; Rajeshwar K
    J Phys Chem B; 2006 Dec; 110(50):25347-55. PubMed ID: 17165981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nanostructured titanium on anodization growth of self-organized TiO2 nanotubes.
    Zhang L; Han Y
    Nanotechnology; 2010 Feb; 21(5):055602. PubMed ID: 20023303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium fluoride-assisted modulation of anodized TiO₂ nanotube for dye-sensitized solar cells application.
    Yun JH; Ng YH; Ye C; Mozer AJ; Wallace GG; Amal R
    ACS Appl Mater Interfaces; 2011 May; 3(5):1585-93. PubMed ID: 21480631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology.
    Kontos AG; Kontos AI; Tsoukleris DS; Likodimos V; Kunze J; Schmuki P; Falaras P
    Nanotechnology; 2009 Jan; 20(4):045603. PubMed ID: 19417323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the growth mechanism of large-diameter double-wall TiO
    Ke C; Ma J; Ni J; Peng Z
    Ann Transl Med; 2023 Jan; 11(1):18. PubMed ID: 36760252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of highly ordered TiO2 nanotube arrays via anodization of Ti-6Al-4V alloy sheet.
    Wang L; Zhao TT; Zhang Z; Li G
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8312-21. PubMed ID: 21121333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping.
    Fabregat-Santiago F; Barea EM; Bisquert J; Mor GK; Shankar K; Grimes CA
    J Am Chem Soc; 2008 Aug; 130(34):11312-6. PubMed ID: 18671396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of near micrometer-sized TiO2 nanotube arrays by high voltage anodization.
    Ni J; Noh K; Frandsen CJ; Kong SD; He G; Tang T; Jin S
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):259-64. PubMed ID: 25428070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties.
    Nah YC; Ghicov A; Kim D; Berger S; Schmuki P
    J Am Chem Soc; 2008 Dec; 130(48):16154-5. PubMed ID: 18998674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization.
    Yin H; Liu H; Shen WZ
    Nanotechnology; 2010 Jan; 21(3):035601. PubMed ID: 19966387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size control of highly ordered HfO2 nanotube arrays and a possible growth mechanism.
    Qiu X; Howe JY; Cardoso MB; Polat O; Heller WT; Parans Paranthaman M
    Nanotechnology; 2009 Nov; 20(45):455601. PubMed ID: 19822933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization.
    Yuan X; Zheng M; Ma L; Shen W
    Nanotechnology; 2010 Oct; 21(40):405302. PubMed ID: 20829566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles.
    Alivov Y; Fan ZY
    Nanotechnology; 2009 Oct; 20(40):405610. PubMed ID: 19752502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.