BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18163639)

  • 1. Photorelease of carboxylic acids mediated by visible-light-absorbing gold-nanoparticles.
    Borak JB; López-Sola S; Falvey DE
    Org Lett; 2008 Feb; 10(3):457-60. PubMed ID: 18163639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photorelease of carboxylic and amino acids from N-methyl-4-picolinium esters by mediated electron transfer.
    Sundararajan C; Falvey DE
    Photochem Photobiol Sci; 2006 Jan; 5(1):116-21. PubMed ID: 16395436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photorelease of primary aliphatic and aromatic amines by visible-light-induced electron transfer.
    Edson JB; Spencer LP; Boncella JM
    Org Lett; 2011 Dec; 13(23):6156-9. PubMed ID: 22046963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photorelease of carboxylic acids, amino acids, and phosphates from N-alkylpicolinium esters using photosensitization by high wavelength laser dyes.
    Sundararajan C; Falvey DE
    J Am Chem Soc; 2005 Jun; 127(22):8000-1. PubMed ID: 15926809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new photolabile protecting group for release of carboxylic acids by visible-light-induced direct and mediated electron transfer.
    Borak JB; Falvey DE
    J Org Chem; 2009 May; 74(10):3894-9. PubMed ID: 19361187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell.
    Youngblood WJ; Lee SH; Kobayashi Y; Hernandez-Pagan EA; Hoertz PG; Moore TA; Moore AL; Gust D; Mallouk TE
    J Am Chem Soc; 2009 Jan; 131(3):926-7. PubMed ID: 19119815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminescence resonance energy transfer sensors based on the assemblies of oppositely charged lanthanide/gold nanoparticles in aqueous solution.
    Gu JQ; Sun LD; Yan ZG; Yan CH
    Chem Asian J; 2008 Oct; 3(10):1857-64. PubMed ID: 18726878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ketocoumarin dyes as electron mediators for visible light induced carboxylate photorelease.
    Borak JB; Falvey DE
    Photochem Photobiol Sci; 2010 Jun; 9(6):854-60. PubMed ID: 20527082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photolytic release of carboxylic acids using linked donor-acceptor molecules: direct versus mediated photoinduced electron transfer to N-alkyl-4-picolinium esters.
    Sundararajan C; Falvey DE
    Org Lett; 2005 Jun; 7(13):2631-4. PubMed ID: 15957908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of thiosalicylic acid stabilized gold nanoparticles.
    Pattabi RM; Pattabi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):195-9. PubMed ID: 19577955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light.
    Dozzi MV; Prati L; Canton P; Selli E
    Phys Chem Chem Phys; 2009 Sep; 11(33):7171-80. PubMed ID: 19672526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles.
    Kumar NA; Bund A; Cho BG; Lim KT; Jeong YT
    Nanotechnology; 2009 Jun; 20(22):225608. PubMed ID: 19436092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers.
    Ifuku S; Tsuji M; Morimoto M; Saimoto H; Yano H
    Biomacromolecules; 2009 Sep; 10(9):2714-7. PubMed ID: 19653675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Honey mediated green synthesis of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(4):650-3. PubMed ID: 19376740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties.
    Polavarapu L; Xu QH
    Nanotechnology; 2009 May; 20(18):185606. PubMed ID: 19420622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.
    Diegoli S; Manciulea AL; Begum S; Jones IP; Lead JR; Preece JA
    Sci Total Environ; 2008 Aug; 402(1):51-61. PubMed ID: 18534664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of electrochemical single-electron-transfer events of gold nanoparticles in aqueous solution in the presence of both ammonium and sulfonate surface-active agents.
    Nakai M; Yamanoi Y; Nishimori Y; Yonezawa T; Nishihara H
    Angew Chem Int Ed Engl; 2008; 47(35):6699-702. PubMed ID: 18646032
    [No Abstract]   [Full Text] [Related]  

  • 20. One-step preparation of hybrid materials of polyacrylamide networks and gold nanoparticles.
    Song Y; Li Z; Wang L; Yao Y; Chen C; Cui K
    Microsc Res Tech; 2008 Jun; 71(6):409-12. PubMed ID: 18431800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.