BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 18163709)

  • 1. Complete phase behavior of the symmetrical colloidal electrolyte.
    Caballero JB; Noya EG; Vega C
    J Chem Phys; 2007 Dec; 127(24):244910. PubMed ID: 18163709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of fluid--solid transitions in model protein solutions using the histogram reweighting method and expanded ensemble simulations.
    Chang J; Lenhoff AM; Sandler SI
    J Chem Phys; 2004 Feb; 120(6):3003-14. PubMed ID: 15268448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.
    Truzzolillo D; Bordi F; Sciortino F; Sennato S
    J Chem Phys; 2010 Jul; 133(2):024901. PubMed ID: 20632770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase separations in liquid crystal-colloid mixtures.
    Matsuyama A; Hirashima R
    J Chem Phys; 2008 Jan; 128(4):044907. PubMed ID: 18248000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid-gas separation in colloidal electrolytes.
    Caballero JB; Puertas AM; Fernández-Barbero A; Javier de Las Nieves F; Romero-Enrique JM; Rull LF
    J Chem Phys; 2006 Feb; 124(5):054909. PubMed ID: 16468920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smoluchowski equation and the colloidal charge reversal.
    Diehl A; Levin Y
    J Chem Phys; 2006 Aug; 125(5):054902. PubMed ID: 16942253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension.
    Fortini A; Hynninen AP; Dijkstra M
    J Chem Phys; 2006 Sep; 125(9):094502. PubMed ID: 16965092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Communication: Tracing phase boundaries via molecular simulation: an alternative to the Gibbs-Duhem integration method.
    Orkoulas G
    J Chem Phys; 2010 Sep; 133(11):111104. PubMed ID: 20866119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three component model of cylindrical electric double layers containing mixed electrolytes: A systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2010 May; 132(19):194706. PubMed ID: 20499983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Donnan potential of dilute colloidal dispersions: Monte Carlo simulations.
    Wang TY; Sheng YJ; Tsao HK
    J Colloid Interface Sci; 2009 Dec; 340(2):192-201. PubMed ID: 19800074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal behavior of disordered phase of caffeine molecular crystal: insights from Monte Carlo simulation studies.
    Murugan NA; Sayeed A
    J Chem Phys; 2009 May; 130(20):204514. PubMed ID: 19485464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154707. PubMed ID: 19045218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastic crystal phases of simple water models.
    Aragones JL; Vega C
    J Chem Phys; 2009 Jun; 130(24):244504. PubMed ID: 19566163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase.
    Sanchez-Burgos I; Garaizar A; Vega C; Sanz E; Espinosa JR
    Soft Matter; 2021 Jan; 17(3):489-505. PubMed ID: 33346291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple model of directional interactions for proteins.
    Li X; Gunton JD; Chakrabarti A
    J Chem Phys; 2009 Sep; 131(11):115101. PubMed ID: 19778150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal response of a microgel system.
    Wu KL; Lai SK
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):290-5. PubMed ID: 17188468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity coefficients and thermodynamic parameters for RbCl/CsCl + amide (acetamide, propanamide, and n-butanamide) + water system at 298.15 K.
    Jiang Y; Hu M; Fan P; Wang J; Zhuo K
    Biophys Chem; 2005 Oct; 118(1):25-30. PubMed ID: 16039039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening effects on structure and diffusion in confined charged colloids.
    Kittner M; Klapp SH
    J Chem Phys; 2007 Apr; 126(15):154902. PubMed ID: 17461662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.