These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 1816372)

  • 21. Oxygen-dependent K+ influxes in Mg2+-clamped equine red blood cells.
    Campbell EH; Cossins AR; Gibson JS
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):431-7. PubMed ID: 10050010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thiol-dependent passive K/Cl transport in sheep red cells: III. Differential reactivity of membrane SH groups with N-ethylmaleimide and iodoacetamide.
    Bauer J; Lauf PK
    J Membr Biol; 1983; 73(3):257-61. PubMed ID: 6864778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of ATP in swelling-stimulated K-Cl cotransport in human red cell ghosts. Phosphorylation-dephosphorylation events are not in the signal transduction pathway.
    Sachs JR; Martin DW
    J Gen Physiol; 1993 Sep; 102(3):551-73. PubMed ID: 8245823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deoxygenation inhibits the volume-stimulated, Cl(-)-dependent K+ efflux in SS and young AA cells: a cytosolic Mg2+ modulation.
    Canessa M; Fabry ME; Nagel RL
    Blood; 1987 Dec; 70(6):1861-6. PubMed ID: 3676517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic comparison of ouabain-resistant K:Cl fluxes (K:Cl [Co]-transport) stimulated in sheep erythrocytes by membrane thiol oxidation and alkylation.
    Lauf PK
    Mol Cell Biochem; 1988; 82(1-2):97-106. PubMed ID: 3185522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. K-Cl cotransport, pH, and role of Mg in volume-clamped low-K sheep erythrocytes: three equilibrium states.
    Lauf PK; Erdmann A; Adragna NC
    Am J Physiol; 1994 Jan; 266(1 Pt 1):C95-103. PubMed ID: 8304434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Several cation transporters and volume regulation in high-K dog red blood cells.
    Fujise H; Yamada I; Masuda M; Miyazawa Y; Ogawa E; Takahashi R
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C589-97. PubMed ID: 1848403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The magnesium dependence of sodium-pump-mediated sodium-potassium and sodium-sodium exchange in intact human red cells.
    Flatman PW; Lew VL
    J Physiol; 1981 Jun; 315():421-46. PubMed ID: 6796677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of magnesium with the sodium pump of the human red cell.
    Sachs JR
    J Physiol; 1988 Jun; 400():575-91. PubMed ID: 2843641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. K-Cl cotransport in LK sheep erythrocytes: kinetics of stimulation by cell swelling.
    Bergh C; Kelley SJ; Dunham PB
    J Membr Biol; 1990 Aug; 117(2):177-88. PubMed ID: 2213861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trans effects of cellular K and Cl on ouabain-resistant Rb(K) influx in low K sheep red blood cells: further evidence for asymmetry of K-Cl cotransport [corrected].
    Delpire E; Lauf PK
    Pflugers Arch; 1991 Nov; 419(5):540-2. PubMed ID: 1775379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elevating intracellular free Mg2+ preserves sensitivity of Na(+)-K+ pump to ATP at reduced temperatures in guinea pig red blood cells.
    Marjanovic M; Willis JS
    J Comp Physiol B; 1995; 165(6):428-32. PubMed ID: 8576455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Swelling-activated K-Cl cotransport: metabolic dependence and inhibition by vanadate and fluoride.
    O'Neill WC
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C308-15. PubMed ID: 1847586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of magnesium on potassium transport in ferret red cells.
    Flatman PW
    J Physiol; 1988 Mar; 397():471-87. PubMed ID: 3137332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional evidence for a pH sensor of erythrocyte K-Cl cotransport through inhibition by internal protons and diethylpyrocarbonate.
    Lauf PK; Adragna NC
    Cell Physiol Biochem; 1998; 8(1-2):46-60. PubMed ID: 9547019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithium transport pathways in human red blood cells.
    Pandey GN; Sarkadi B; Haas M; Gunn RB; Davis JM; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):233-47. PubMed ID: 690597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Volume and anion dependency of ouabain-resistant K-Rb fluxes in sheep red blood cells.
    Lauf PK
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C331-9. PubMed ID: 3421316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulatory volume decrease in lamprey erythrocytes: mechanisms of K+ and Cl- loss.
    Virkki LV; Nikinmaa M
    Am J Physiol; 1995 Mar; 268(3 Pt 2):R590-7. PubMed ID: 7900900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of membrane potential and internal pH on active sodium-potassium transport and on ATP content in high-potassium sheep erythrocytes.
    Zade-Oppen AM; Schooler JM; Cook P; Tosteson DC
    Biochim Biophys Acta; 1979 Aug; 555(2):285-98. PubMed ID: 38843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lithium and protein kinase C modulators regulate swelling-activated K-Cl cotransport and reveal a complete phosphatidylinositol cycle in low K sheep erythrocytes.
    Ferrell CM; Lauf PK; Wilson BA; Adragna NC
    J Membr Biol; 2000 Sep; 177(1):81-93. PubMed ID: 10960155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.