These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18163740)

  • 1. A differential double-coil inductive transducer for measuring electrical conductivity.
    Kusmierz J
    Rev Sci Instrum; 2007 Dec; 78(12):124701. PubMed ID: 18163740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of a double-coil inductive transducer for measuring electrical conductivity.
    Kusmierz J
    Rev Sci Instrum; 2007 Aug; 78(8):084704. PubMed ID: 17764344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-layer PVDF transducer and V(z) measurement system for measuring leaky Lamb waves in a piezoelectric plate.
    Lee YC; Kuo SH
    Ultrasonics; 2007 Mar; 46(1):25-33. PubMed ID: 17113617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transistor based air flow transducer for thermohygrometric control of neonatal ventilatory applications.
    Schena E; Silvestri S
    Rev Sci Instrum; 2008 Oct; 79(10):104301. PubMed ID: 19044734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating.
    Killingback AL; Newey VR; El-Brawany MA; Nassiri DK
    Ultrasound Med Biol; 2008 Dec; 34(12):2035-42. PubMed ID: 18723269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nondestructive measurement and high-precision evaluation of the electrical conductivity of doped GaAs wafers using microwaves.
    Liu L; Ju Y
    Rev Sci Instrum; 2010 Dec; 81(12):124701. PubMed ID: 21198038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.
    Nalladega V; Sathish S; Jata KV; Blodgett MP
    Rev Sci Instrum; 2008 Jul; 79(7):073705. PubMed ID: 18681706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.
    Ahmed M; Liu Z; Humphries S; Goldberg SN
    Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High temperature setup for measurements of Seebeck coefficient and electrical resistivity of thin films using inductive heating.
    Adnane L; Williams N; Silva H; Gokirmak A
    Rev Sci Instrum; 2015 Oct; 86(10):105119. PubMed ID: 26520996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant torsional apparatus for contactless measurements of electrical conductivity and magnetic susceptibility of solids.
    Hendrickson JR; Philbrook J
    Rev Sci Instrum; 1979 Jul; 50(7):849-55. PubMed ID: 18699618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the Coil Excitation Method on the Performance of a Dual-Coil Inductive Displacement Transducer.
    Xu J; Li Y; Li R; Yang J; Yu X
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids.
    Igarashi B; Christensen T; Larsen EH; Olsen NB; Pedersen IH; Rasmussen T; Dyre JC
    Rev Sci Instrum; 2008 Apr; 79(4):045106. PubMed ID: 18447551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The utility of pelvic coil SNR testing in the quality assurance of a clinical MRgFUS system.
    Gorny KR; Hangiandreou NJ; Ward HA; Hesley GK; Brown DL; Felmlee JP
    Phys Med Biol; 2009 Apr; 54(7):N83-91. PubMed ID: 19265205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Inductive Sensing System for Truly Contactless Measuring of Liquids' Electromagnetic Properties in Tubing.
    Berger M; Zygmanowski A; Zimmermann S
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis.
    Hallez H; Vanrumste B; Van Hese P; Delputte S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1877-94. PubMed ID: 18364544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Feb; 85(2):025108. PubMed ID: 24593397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete equation for the measurement of organic molecules using stable isotope labeled internal standards, exact matching, and mass spectrometry.
    Burke DG; Mackay LG
    Anal Chem; 2008 Jul; 80(13):5071-8. PubMed ID: 18517220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory systems for measuring short-term changes in water levels.
    Villeneuve JP; Ouellet Y
    Rev Sci Instrum; 1978 Oct; 49(10):1425. PubMed ID: 18698970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.