These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
402 related articles for article (PubMed ID: 18163766)
1. Random walks on the Comb model and its generalizations. Arkhincheev VE Chaos; 2007 Dec; 17(4):043102. PubMed ID: 18163766 [TBL] [Abstract][Full Text] [Related]
2. Anomalous lineshapes and aging effects in two-dimensional correlation spectroscopy. Sanda F; Mukamel S J Chem Phys; 2007 Oct; 127(15):154107. PubMed ID: 17949132 [TBL] [Abstract][Full Text] [Related]
3. Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Baeumer B; Kovács M; Meerschaert MM Bull Math Biol; 2007 Oct; 69(7):2281-97. PubMed ID: 17546475 [TBL] [Abstract][Full Text] [Related]
4. Statistical analysis of sets of random walks: how to resolve their generating mechanism. Coscoy S; Huguet E; Amblard F Bull Math Biol; 2007 Nov; 69(8):2467-92. PubMed ID: 17896161 [TBL] [Abstract][Full Text] [Related]
5. Fractional generalization of Liouville equations. Tarasov VE Chaos; 2004 Mar; 14(1):123-7. PubMed ID: 15003052 [TBL] [Abstract][Full Text] [Related]
6. Anomalous diffusion in a quenched-trap model on fractal lattices. Miyaguchi T; Akimoto T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):010102. PubMed ID: 25679550 [TBL] [Abstract][Full Text] [Related]
7. Statistics of rare strong bursts in autocatalytic stochastic growth with diffusion. Nakao H; Mikhailov AS Chaos; 2003 Sep; 13(3):953-61. PubMed ID: 12946188 [TBL] [Abstract][Full Text] [Related]
8. Microscopic theory of anomalous diffusion based on particle interactions. Lutsko JF; Boon JP Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022108. PubMed ID: 24032776 [TBL] [Abstract][Full Text] [Related]
10. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels. Li B; Wang J; Wang L; Zhang G Chaos; 2005 Mar; 15(1):15121. PubMed ID: 15836298 [TBL] [Abstract][Full Text] [Related]
11. Fractional chemotaxis diffusion equations. Langlands TA; Henry BI Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051102. PubMed ID: 20866180 [TBL] [Abstract][Full Text] [Related]
12. Mean value and fluctuations in a model of diffusion in porous media. Ourrad O; Erochenkova G; Lima R; Vittot M Chaos; 2006 Sep; 16(3):033128. PubMed ID: 17014233 [TBL] [Abstract][Full Text] [Related]
13. Pattern formation induced by internal microscopic fluctuations. Wang H; Fu Z; Xu X; Ouyang Q J Phys Chem A; 2007 Feb; 111(7):1265-70. PubMed ID: 17256832 [TBL] [Abstract][Full Text] [Related]
14. From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. Sokolov IM; Klafter J Chaos; 2005 Jun; 15(2):26103. PubMed ID: 16035905 [TBL] [Abstract][Full Text] [Related]
15. Kramers escape rate in nonlinear diffusive media. JiangLin Z; Bao JD; Wenping G J Chem Phys; 2006 Jan; 124(2):024112. PubMed ID: 16422576 [TBL] [Abstract][Full Text] [Related]
16. Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks. Abad E; Yuste SB; Lindenberg K Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031115. PubMed ID: 20365705 [TBL] [Abstract][Full Text] [Related]
18. A new criterion to distinguish stochastic and deterministic time series with the Poincaré section and fractal dimension. Golestani A; Jahed Motlagh MR; Ahmadian K; Omidvarnia AH; Mozayani N Chaos; 2009 Mar; 19(1):013137. PubMed ID: 19335001 [TBL] [Abstract][Full Text] [Related]
19. Numerical method based on the lattice Boltzmann model for the Fisher equation. Yan G; Zhang J; Dong Y Chaos; 2008 Jun; 18(2):023131. PubMed ID: 18601497 [TBL] [Abstract][Full Text] [Related]
20. Asymptotic velocity of one dimensional diffusions with periodic drift. Collet P; Martínez S J Math Biol; 2008 Jun; 56(6):765-92. PubMed ID: 17960387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]