These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 18163801)
1. Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy. Mohanty K; Mohanty S; Monajembashi S; Greulich KO J Biomed Opt; 2007; 12(6):060506. PubMed ID: 18163801 [TBL] [Abstract][Full Text] [Related]
2. Birefringence of a normal human red blood cell and related optomechanics in an optical trap. Nagesh BV; Yogesha ; Pratibha R; Parthasarathi P; Iyengar SS; Bhattacharya S; Ananthamurthy S J Biomed Opt; 2014; 19(11):115004. PubMed ID: 25396712 [TBL] [Abstract][Full Text] [Related]
3. Orientational dynamics of human red blood cells in an optical trap. Parthasarathi P; Nagesh BV; Lakkegowda Y; Iyengar SS; Ananthamurthy S; Bhattacharya S J Biomed Opt; 2013 Feb; 18(2):25001. PubMed ID: 23381225 [TBL] [Abstract][Full Text] [Related]
4. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Agrawal R; Smart T; Nobre-Cardoso J; Richards C; Bhatnagar R; Tufail A; Shima D; H Jones P; Pavesio C Sci Rep; 2016 Mar; 6():15873. PubMed ID: 26976672 [TBL] [Abstract][Full Text] [Related]
5. Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers. Liu J; Zhu L; Zhang F; Dong M; Qu X Appl Opt; 2019 May; 58(15):4042-4046. PubMed ID: 31158157 [TBL] [Abstract][Full Text] [Related]
6. On the birefringence of healthy and malaria-infected red blood cells. Dharmadhikari AK; Basu H; Dharmadhikari JA; Sharma S; Mathur D J Biomed Opt; 2013 Dec; 18(12):125001. PubMed ID: 24296996 [TBL] [Abstract][Full Text] [Related]
7. Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode. Dasgupta R; Ahlawat S; Verma RS; Gupta PK Opt Express; 2011 Apr; 19(8):7680-8. PubMed ID: 21503077 [TBL] [Abstract][Full Text] [Related]
8. One-Dimensional STED Microscopy in Optical Tweezers. Man T; Geldhof JJ; Peterman EJG; Wuite GJL; Heller I Methods Mol Biol; 2022; 2478():101-122. PubMed ID: 36063320 [TBL] [Abstract][Full Text] [Related]
10. Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization. Mohanty S Lab Chip; 2012 Oct; 12(19):3624-36. PubMed ID: 22899251 [TBL] [Abstract][Full Text] [Related]
16. Alignment of biological microparticles by a polarized laser beam. Garab G; Galajda P; Pomozi I; Finzi L; Praznovszky T; Ormos P; van Amerongen H Eur Biophys J; 2005 Jun; 34(4):335-43. PubMed ID: 15812640 [TBL] [Abstract][Full Text] [Related]
17. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps. Liao GB; Chen YQ; Bareil PB; Sheng Y; Chiou A; Chang MS J Biophotonics; 2014 Oct; 7(10):782-7. PubMed ID: 23740841 [TBL] [Abstract][Full Text] [Related]
18. Automatic real time evaluation of red blood cell elasticity by optical tweezers. Moura DS; Silva DC; Williams AJ; Bezerra MA; Fontes A; de Araujo RE Rev Sci Instrum; 2015 May; 86(5):053702. PubMed ID: 26026527 [TBL] [Abstract][Full Text] [Related]
19. Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis. Mohanty SK; Uppal A; Gupta PK Biotechnol Lett; 2004 Jun; 26(12):971-4. PubMed ID: 15269521 [TBL] [Abstract][Full Text] [Related]