BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18163801)

  • 21. Optical micromanipulation methods for controlled rotation, transportation, and microinjection of biological objects.
    Mohanty SK; Gupta PK
    Methods Cell Biol; 2007; 82():563-99. PubMed ID: 17586272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical guiding-based cell focusing for Raman flow cell cytometer.
    Verma RS; Ahlawat S; Uppal A
    Analyst; 2018 May; 143(11):2648-2655. PubMed ID: 29756139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Mol Biol; 2017; 1486():183-256. PubMed ID: 27844430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental analysis of Hb oxy-deoxy transition in single optically stretched red blood cells.
    Rusciano G
    Phys Med; 2010 Oct; 26(4):233-9. PubMed ID: 20185349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells.
    Liao GB; Bareil PB; Sheng Y; Chiou A
    Opt Express; 2008 Feb; 16(3):1996-2004. PubMed ID: 18542279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ray Optics Model for Optical Trapping of Biconcave Red Blood Cells.
    Tognato R; Jones PH
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring red blood cell aggregation forces using double optical tweezers.
    Fernandes HP; Fontes A; Thomaz A; Castro V; Cesar CL; Barjas-Castro ML
    Scand J Clin Lab Invest; 2013 Apr; 73(3):262-4. PubMed ID: 23402665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-beam bilateral teleoperation of holographic optical tweezers.
    Onda K; Arai F
    Opt Express; 2012 Feb; 20(4):3633-41. PubMed ID: 22418122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multifunctional manipulation of red blood cells using optical tweezers.
    Xie Y; Liu X
    J Biophotonics; 2022 Feb; 15(2):e202100315. PubMed ID: 34773382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The optical cell rotator.
    Kreysing MK; Kiessling T; Fritsch A; Dietrich C; Guck JR; Käs JA
    Opt Express; 2008 Oct; 16(21):16984-92. PubMed ID: 18852807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Out-of-Plane Rotation Control of Biological Cells With a Robot-Tweezers Manipulation System for Orientation-Based Cell Surgery.
    Xie M; Shakoor A; Shen Y; Mills JK; Sun D
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):199-207. PubMed ID: 29993395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects.
    Kauppila A; Kinnunen M; Karmenyan A; Myllylä R
    Appl Opt; 2012 Aug; 51(23):5705-12. PubMed ID: 22885584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions.
    Lee K; Kinnunen M; Khokhlova MD; Lyubin EV; Priezzhev AV; Meglinski I; Fedyanin AA
    J Biomed Opt; 2016 Mar; 21(3):35001. PubMed ID: 26953660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation of a dedicated mechanical model for red blood cells: numerical simulations of optical tweezers experiment.
    Sigüenza J; Mendez S; Nicoud F
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():28-9. PubMed ID: 25074148
    [No Abstract]   [Full Text] [Related]  

  • 35. Mutual interaction of red blood cells assessed by optical tweezers and scanning electron microscopy imaging.
    Avsievich T; Popov A; Bykov A; Meglinski I
    Opt Lett; 2018 Aug; 43(16):3921-3924. PubMed ID: 30106917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diagnosis of malarial infection using change in properties of optically trapped red blood cells.
    Paul A; Padmapriya P; Natarajan V
    Biomed J; 2017 Apr; 40(2):101-105. PubMed ID: 28521900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The effect of abnormal cell shape on the spectral distinguishing of erythrocytes using laser tweezers Raman spectroscopy].
    Wang GW; Peng LX; Yao HL; Huang SS; Chen P; Li YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2117-21. PubMed ID: 19839321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implementation of 3D Multi-Color Fluorescence Microscopy in a Quadruple Trap Optical Tweezers System.
    Meijering AEC; Bakx JAM; Man T; Heller I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2022; 2478():75-100. PubMed ID: 36063319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accounting for polarization in the calibration of a donut beam axial optical tweezers.
    Pollari R; Milstein JN
    PLoS One; 2018; 13(2):e0193402. PubMed ID: 29474494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.