These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18163801)

  • 41. Laser trap ionization for identification of human erythrocytes with variable hemoglobin quantitation.
    Kelley M; Cooper J; Devito D; Mushi R; Aguinaga MDP; Erenso DB
    J Biomed Opt; 2018 May; 23(5):1-10. PubMed ID: 29851330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Euler buckling-induced folding and rotation of red blood cells in an optical trap.
    Ghosh A; Sinha S; Dharmadhikari JA; Roy S; Dharmadhikari AK; Samuel J; Sharma S; Mathur D
    Phys Biol; 2006 Mar; 3(1):67-73. PubMed ID: 16582471
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct observation of hydrodynamic rotation-translation coupling between two colloidal spheres.
    Martin S; Reichert M; Stark H; Gisler T
    Phys Rev Lett; 2006 Dec; 97(24):248301. PubMed ID: 17280329
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-Resolution Optical Tweezers Combined with Multicolor Single-Molecule Microscopy.
    Yadav R; Senanayake KB; Comstock MJ
    Methods Mol Biol; 2022; 2478():141-240. PubMed ID: 36063322
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid 3D fluorescence imaging of individual optically trapped living immune cells.
    Wolfson D; Steck M; Persson M; McNerney G; Popovich A; Goksör M; Huser T
    J Biophotonics; 2015 Mar; 8(3):208-16. PubMed ID: 24420444
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Red blood cell membrane damage by light-induced thermal gradient under optical trap.
    Chowdhury A; Waghmare D; Dasgupta R; Majumder SK
    J Biophotonics; 2018 Aug; 11(8):e201700222. PubMed ID: 29498486
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rotation of single bacterial cells relative to the optical axis using optical tweezers.
    Carmon G; Feingold M
    Opt Lett; 2011 Jan; 36(1):40-2. PubMed ID: 21209680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative phase microscopy of red blood cells during planar trapping and propulsion.
    Ahmad A; Dubey V; Singh VR; Tinguely JC; Øie CI; Wolfson DL; Mehta DS; So PTC; Ahluwalia BS
    Lab Chip; 2018 Sep; 18(19):3025-3036. PubMed ID: 30132501
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optical Trapping and Micro-Raman Spectroscopy of Functional Red Blood Cells Using Vortex Beam for Cell Membrane Studies.
    C G; Shetty S; Bharati S; Chidangil S; Bankapur A
    Anal Chem; 2021 Apr; 93(13):5484-5493. PubMed ID: 33764040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trapping red blood cells in living animals using optical tweezers.
    Zhong MC; Wei XB; Zhou JH; Wang ZQ; Li YM
    Nat Commun; 2013; 4():1768. PubMed ID: 23612309
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Particle tracking stereomicroscopy in optical tweezers: control of trap shape.
    Bowman R; Gibson G; Padgett M
    Opt Express; 2010 May; 18(11):11785-90. PubMed ID: 20589039
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lysophosphatidic acid induced red blood cell aggregation in vitro.
    Kaestner L; Steffen P; Nguyen DB; Wang J; Wagner-Britz L; Jung A; Wagner C; Bernhardt I
    Bioelectrochemistry; 2012 Oct; 87():89-95. PubMed ID: 21890432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Construction and calibration of an optical trap on a fluorescence optical microscope.
    Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K
    Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.
    Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N
    Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers.
    Sheu FW; Lan TK; Lin YC; Chen S; Ay C
    Opt Express; 2010 Jul; 18(14):14724-9. PubMed ID: 20639958
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical manipulation in combination with multiphoton microscopy for single-cell studies.
    Goksör M; Enger J; Hanstorp D
    Appl Opt; 2004 Sep; 43(25):4831-7. PubMed ID: 15449469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis.
    Chen YQ; Chen CW; Ni YL; Huang YS; Lin O; Chien S; Sung LA; Chiou A
    J Biophotonics; 2014 Aug; 7(8):647-55. PubMed ID: 23963649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Measurement of membrane rigidity on trapped unilamellar phospholipid vesicles by using differential confocal microscopy.
    Liu TH; Xiao JL; Lee CH; Lin JY
    Appl Opt; 2011 Jul; 50(19):3311-5. PubMed ID: 21743534
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Study of Raman spectroscopy of optically trapped human red blood cell affected by direct current].
    Yue L; Wang G; Fang L; Yao H; Yuan Z; Mo H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):404-8. PubMed ID: 17591270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.