These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18163846)

  • 61. Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases.
    Malevich PN; Kartashov D; Pu Z; Ališauskas S; Pugžlys A; Baltuška A; Giniūnas L; Danielius R; Lanin AA; Zheltikov AM; Marangoni M; Cerullo G
    Opt Express; 2012 Aug; 20(17):18784-94. PubMed ID: 23038518
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration.
    Andreana M; Labruyère A; Tonello A; Wabnitz S; Leproux P; Couderc V; Duterte C; Cserteg A; Bertrand A; Hernandez Y; Giannone D; Hilaire S; Huss G
    Opt Express; 2012 May; 20(10):10750-60. PubMed ID: 22565699
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers.
    Klarskov P; Isomäki A; Hansen KP; Andersen PE
    Opt Express; 2011 Dec; 19(27):26672-83. PubMed ID: 22274252
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources.
    István K; Keresztury G; Szép A
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1709-23. PubMed ID: 12736057
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Monitoring molecular dynamics using coherent electrons from high harmonic generation.
    Wagner NL; Wüest A; Christov IP; Popmintchev T; Zhou X; Murnane MM; Kapteyn HC
    Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13279-85. PubMed ID: 16895984
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering.
    Li H; Harris DA; Xu B; Wrzesinski PJ; Lozovoy VV; Dantus M
    Appl Opt; 2009 Feb; 48(4):B17-22. PubMed ID: 19183575
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light.
    Puppels GJ; Olminkhof JH; Segers-Nolten GM; Otto C; de Mul FF; Greve J
    Exp Cell Res; 1991 Aug; 195(2):361-7. PubMed ID: 2070819
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Accelerated detection of viral particles by combining AC electric field effects and micro-Raman spectroscopy.
    Tomkins MR; Liao DS; Docoslis A
    Sensors (Basel); 2015 Jan; 15(1):1047-59. PubMed ID: 25580902
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.
    Bergholt MS; Duraipandian S; Zheng W; Huang Z
    Anal Chem; 2013 Dec; 85(23):11297-303. PubMed ID: 24160634
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analysis of femtosecond stimulated Raman spectroscopy of excited-state evolution in bacteriorhodopsin.
    Niu K; Zhao B; Sun Z; Lee SY
    J Chem Phys; 2010 Feb; 132(8):084510. PubMed ID: 20192310
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Direct observation of anharmonic coupling in the time domain with femtosecond stimulated Raman scattering.
    Kukura P; Frontiera R; Mathies RA
    Phys Rev Lett; 2006 Jun; 96(23):238303. PubMed ID: 16803414
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Vicker's hardness and Raman spectroscopy evaluation of a dental composite cured by an argon laser and a halogen lamp.
    Soares LE; Martin AA; Pinheiro AL; Pacheco MT
    J Biomed Opt; 2004; 9(3):601-8. PubMed ID: 15189099
    [TBL] [Abstract][Full Text] [Related]  

  • 73. X-ray amplification from a Raman free-electron laser.
    Andriyash IA; d'Humières E; Tikhonchuk VT; Balcou P
    Phys Rev Lett; 2012 Dec; 109(24):244802. PubMed ID: 23368329
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Filament-driven impulsive Raman spectroscopy.
    Odhner JH; McCole ET; Levis RJ
    J Phys Chem A; 2011 Nov; 115(46):13407-12. PubMed ID: 21977899
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging.
    Stürzl N; Lebedkin S; Klumpp S; Hennrich F; Kappes MM
    Anal Chem; 2013 May; 85(9):4554-9. PubMed ID: 23521587
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microsystem 671 nm light source for shifted excitation Raman difference spectroscopy.
    Maiwald M; Schmidt H; Sumpf B; Erbert G; Kronfeldt HD; Tränkle G
    Appl Opt; 2009 May; 48(15):2789-92. PubMed ID: 19458726
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Recent progress in tissue optical clearing for spectroscopic application.
    Sdobnov AY; Darvin ME; Genina EA; Bashkatov AN; Lademann J; Tuchin VV
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():216-229. PubMed ID: 29433855
    [TBL] [Abstract][Full Text] [Related]  

  • 78. 1.6 W continuous-wave Raman laser using low-loss synthetic diamond.
    Lubeigt W; Savitski VG; Bonner GM; Geoghegan SL; Friel I; Hastie JE; Dawson MD; Burns D; Kemp AJ
    Opt Express; 2011 Mar; 19(7):6938-44. PubMed ID: 21451719
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Arbitrarily copropagating superluminal and slow light by controllable one-photon detuning in trapped cold atoms.
    Zhao Y; Ma J; Zhang X; Wang L; Xiao L; Jia S
    Opt Express; 2008 Mar; 16(7):4747-52. PubMed ID: 18542572
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Theoretical and experimental study on passively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers.
    Ding S; Zhang W; Wang S; Wang X; Zhang J; Wang M
    Appl Opt; 2013 May; 52(15):3583-90. PubMed ID: 23736244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.