These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 18163869)
21. Thermodynamic electron equivalents model for bacterial yield prediction: modifications and comparative evaluations. McCarty PL Biotechnol Bioeng; 2007 Jun; 97(2):377-88. PubMed ID: 17089390 [TBL] [Abstract][Full Text] [Related]
22. An energy balance concept for habitability. Hoehler TM Astrobiology; 2007 Dec; 7(6):824-38. PubMed ID: 18163865 [TBL] [Abstract][Full Text] [Related]
23. Model to couple anaerobic process kinetics with biological growth equilibrium thermodynamics. McCarty PL; Bae J Environ Sci Technol; 2011 Aug; 45(16):6838-44. PubMed ID: 21740015 [TBL] [Abstract][Full Text] [Related]
24. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production. Teh KY; Lutz AE J Biotechnol; 2010 May; 147(2):80-7. PubMed ID: 20184925 [TBL] [Abstract][Full Text] [Related]
25. Superposition-additive approach in the description of thermodynamic parameters of formation and clusterization of substituted alkanes at the air/water interface. Vysotsky YB; Belyaeva EA; Fomina ES; Vasylyev AO; Vollhardt D; Fainerman VB; Aksenenko EV; Miller R J Colloid Interface Sci; 2012 Dec; 387(1):162-74. PubMed ID: 22939427 [TBL] [Abstract][Full Text] [Related]
26. A thermodynamically-based model for predicting microbial growth and community composition coupled to system geochemistry: Application to uranium bioreduction. Istok JD; Park M; Michalsen M; Spain AM; Krumholz LR; Liu C; McKinley J; Long P; Roden E; Peacock AD; Baldwin B J Contam Hydrol; 2010 Mar; 112(1-4):1-14. PubMed ID: 19683832 [TBL] [Abstract][Full Text] [Related]
27. Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Vick TJ; Dodsworth JA; Costa KC; Shock EL; Hedlund BP Geobiology; 2010 Mar; 8(2):140-54. PubMed ID: 20002204 [TBL] [Abstract][Full Text] [Related]
29. Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. Westerhoff HV; Hellingwerf KJ; Van Dam K Proc Natl Acad Sci U S A; 1983 Jan; 80(1):305-9. PubMed ID: 6572006 [TBL] [Abstract][Full Text] [Related]
30. Thermodynamic dependence of DNA/DNA and DNA/RNA hybridization reactions on temperature and ionic strength. Lang BE; Schwarz FP Biophys Chem; 2007 Dec; 131(1-3):96-104. PubMed ID: 17942215 [TBL] [Abstract][Full Text] [Related]
31. Modelling thermodynamic feedback on the metabolism of hydrogenotrophic methanogens. Lynch TA; Wang Y; van Brunt B; Pacheco D; Janssen PH J Theor Biol; 2019 Sep; 477():14-23. PubMed ID: 31150665 [TBL] [Abstract][Full Text] [Related]
32. Systematic assignment of thermodynamic constraints in metabolic network models. Kümmel A; Panke S; Heinemann M BMC Bioinformatics; 2006 Nov; 7():512. PubMed ID: 17123434 [TBL] [Abstract][Full Text] [Related]
33. A thermodynamic interpretation of the Monod equation. Liu Y; Lin YM; Yang SF Curr Microbiol; 2003 Mar; 46(3):233-4. PubMed ID: 12567249 [TBL] [Abstract][Full Text] [Related]
34. Thermodynamic properties of microorganisms: determination and analysis of enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32 microorganism species. Popovic M Heliyon; 2019 Jun; 5(6):e01950. PubMed ID: 31286084 [TBL] [Abstract][Full Text] [Related]
35. Thermodynamic analysis of growth of methanobacterium thermoautotrophicum. Schill NA; Liu JS; Stockar Uv Biotechnol Bioeng; 1999 Jul; 64(1):74-81. PubMed ID: 10397841 [TBL] [Abstract][Full Text] [Related]
36. Free energy change in experimental microbial growth-reaction. Boffi V; Lucarelli AM Nuovi Ann Ig Microbiol; 1988; 39(2):85-102. PubMed ID: 3244531 [No Abstract] [Full Text] [Related]
37. Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems. Rousk J; Smith AR; Jones DL Glob Chang Biol; 2013 Dec; 19(12):3872-84. PubMed ID: 23897832 [TBL] [Abstract][Full Text] [Related]
38. Thermodynamic constraints on the utility of ecological stoichiometry for explaining global biogeochemical patterns. Helton AM; Ardón M; Bernhardt ES Ecol Lett; 2015 Oct; 18(10):1049-56. PubMed ID: 26259672 [TBL] [Abstract][Full Text] [Related]
39. Thermodynamics of growth. Non-equilibrium thermodynamics of bacterial growth. The phenomenological and the mosaic approach. Westerhoff HV; Lolkema JS; Otto R; Hellingwerf KJ Biochim Biophys Acta; 1982 Dec; 683(3-4):181-220. PubMed ID: 7159578 [TBL] [Abstract][Full Text] [Related]
40. How reliable are thermodynamic feasibility statements of biochemical pathways? Maskow T; von Stockar U Biotechnol Bioeng; 2005 Oct; 92(2):223-30. PubMed ID: 15962336 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]