These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 18164056)

  • 21. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.
    Park IS; Kim SH; Kim YH; Kim IH; Kim SH
    J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the natural history of extracellular matrix production in tissue-engineered vascular grafts during neovessel formation.
    Naito Y; Williams-Fritze M; Duncan DR; Church SN; Hibino N; Madri JA; Humphrey JD; Shinoka T; Breuer CK
    Cells Tissues Organs; 2012; 195(1-2):60-72. PubMed ID: 21996715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
    Engelmayr GC; Sacks MS
    J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model.
    Fukunishi T; Best CA; Sugiura T; Shoji T; Yi T; Udelsman B; Ohst D; Ong CS; Zhang H; Shinoka T; Breuer CK; Johnson J; Hibino N
    PLoS One; 2016; 11(7):e0158555. PubMed ID: 27467821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system.
    Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW
    Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries.
    Bagnasco DS; Ballarin FM; Cymberknop LJ; Balay G; Negreira C; Abraham GA; Armentano RL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():446-54. PubMed ID: 25491850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of hesperidin loaded poly(lactic-co-glycolic acid) scaffolds on growth behavior of costal cartilage cells in vitro and in vivo.
    Cho SA; Cha SR; Park SM; Kim KH; Lee HG; Kim EY; Lee D; Khang G
    J Biomater Sci Polym Ed; 2014; 25(6):625-40. PubMed ID: 24588773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stem cells and scaffolds for vascularizing engineered tissue constructs.
    Luong E; Gerecht S
    Adv Biochem Eng Biotechnol; 2009; 114():129-72. PubMed ID: 19082932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts.
    Stekelenburg M; Rutten MC; Snoeckx LH; Baaijens FP
    Tissue Eng Part A; 2009 May; 15(5):1081-9. PubMed ID: 18831688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering.
    Sahoo S; Cho-Hong JG; Siew-Lok T
    Biomed Mater; 2007 Sep; 2(3):169-73. PubMed ID: 18458468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporation of photo-carbon monoxide releasing materials into electrospun scaffolds for vascular tissue engineering.
    Michael E; Abeyrathna N; Patel AV; Liao Y; Bashur CA
    Biomed Mater; 2016 Mar; 11(2):025009. PubMed ID: 27007251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D-Printed Biodegradable Polymeric Vascular Grafts.
    Melchiorri AJ; Hibino N; Best CA; Yi T; Lee YU; Kraynak CA; Kimerer LK; Krieger A; Kim P; Breuer CK; Fisher JP
    Adv Healthc Mater; 2016 Feb; 5(3):319-325. PubMed ID: 26627057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The tissue-engineered vascular graft using bone marrow without culture.
    Hibino N; Shin'oka T; Matsumura G; Ikada Y; Kurosawa H
    J Thorac Cardiovasc Surg; 2005 May; 129(5):1064-70. PubMed ID: 15867781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Biomaterials and vascular grafts].
    Xiang P; Li M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1420-4. PubMed ID: 21375008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering.
    Krebs MD; Sutter KA; Lin AS; Guldberg RE; Alsberg E
    Acta Biomater; 2009 Oct; 5(8):2847-59. PubMed ID: 19446056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation and
    Agarwal R; Blum KM; Musgrave A; Onwuka EA; Yi T; Reinhardt JW; A Best C; Breuer CK
    Regen Med; 2019 Jul; 14(7):627-637. PubMed ID: 31342857
    [No Abstract]   [Full Text] [Related]  

  • 39. Seeding osteoblastic cells into a macroporous biodegradable CaP/PLGA scaffold by a centrifugal force.
    Beloti MM; Tambasco De Oliveira P; Perri De Carvalho PS; Rosa AL
    J Biomater Appl; 2009 May; 23(6):481-95. PubMed ID: 18801891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering.
    Li M; Liu W; Sun J; Xianyu Y; Wang J; Zhang W; Zheng W; Huang D; Di S; Long YZ; Jiang X
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5921-6. PubMed ID: 23790233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.