BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18164087)

  • 1. Role of primate cerebellar lobulus petrosus of paraflocculus in smooth pursuit eye movement control revealed by chemical lesion.
    Hiramatsu T; Ohki M; Kitazawa H; Xiong G; Kitamura T; Yamada J; Nagao S
    Neurosci Res; 2008 Mar; 60(3):250-8. PubMed ID: 18164087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mossy and climbing fiber collateral inputs in monkey cerebellar paraflocculus lobulus petrosus and hemispheric lobule VII and their relevance to oculomotor functions.
    Xiong G; Nagao S; Kitazawa H
    Neurosci Lett; 2010 Jan; 468(3):282-6. PubMed ID: 19909786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive modifications of post-saccadic smooth pursuit eye movements and their interaction with saccades and the vestibulo-ocular reflex in the primate.
    Nagao S; Kitazawa H
    Neurosci Res; 1998 Oct; 32(2):157-69. PubMed ID: 9858023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smooth-pursuit eye-movement-related neuronal activity in macaque nucleus reticularis tegmenti pontis.
    Suzuki DA; Yamada T; Yee RD
    J Neurophysiol; 2003 Apr; 89(4):2146-58. PubMed ID: 12686582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smooth-pursuit eye movement deficits with chemical lesions in the dorsolateral pontine nucleus of the monkey.
    May JG; Keller EL; Suzuki DA
    J Neurophysiol; 1988 Mar; 59(3):952-77. PubMed ID: 3367205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects.
    Ohki M; Kitazawa H; Hiramatsu T; Kaga K; Kitamura T; Yamada J; Nagao S
    J Neurophysiol; 2009 Feb; 101(2):934-47. PubMed ID: 19196922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of catch-up saccades during sustained pursuit.
    de Brouwer S; Missal M; Barnes G; Lefèvre P
    J Neurophysiol; 2002 Apr; 87(4):1772-80. PubMed ID: 11929898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of substantia nigra pars reticulata neurons during smooth pursuit eye movements in monkeys.
    Basso MA; Pokorny JJ; Liu P
    Eur J Neurosci; 2005 Jul; 22(2):448-64. PubMed ID: 16045498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horizontal smooth pursuit adaptation in macaques after muscimol inactivation of the dorsolateral pontine nucleus (DLPN).
    Ono S; Mustari MJ
    J Neurophysiol; 2007 Nov; 98(5):2918-32. PubMed ID: 17804582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth-pursuit eye-movement deficits with chemical lesions in macaque nucleus reticularis tegmenti pontis.
    Suzuki DA; Yamada T; Hoedema R; Yee RD
    J Neurophysiol; 1999 Sep; 82(3):1178-86. PubMed ID: 10482737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsaccadic enhancement of initiation of smooth pursuit eye movements in monkeys.
    Lisberger SG
    J Neurophysiol; 1998 Apr; 79(4):1918-30. PubMed ID: 9535958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancelling of pursuit and saccadic eye movements in humans and monkeys.
    Kornylo K; Dill N; Saenz M; Krauzlis RJ
    J Neurophysiol; 2003 Jun; 89(6):2984-99. PubMed ID: 12783947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex predictive eye pursuit in monkey: a model system for cerebellar studies of skilled movement.
    Kettner RE; Suh M; Davis D; Leung HC
    Arch Ital Biol; 2002 Oct; 140(4):331-40. PubMed ID: 12228986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccades to moving targets.
    Eggert T; Guan Y; Bayer O; Büttner U
    Ann N Y Acad Sci; 2005 Apr; 1039():149-59. PubMed ID: 15826969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccadic and smooth pursuit eye movements: computational modeling of a common inhibitory mechanism in brainstem.
    Rahafrooz A; Fallah A; Jafari AH; Bakouie F; Zendehrouh S; Gharibzadeh S
    Neurosci Lett; 2008 Dec; 448(1):84-9. PubMed ID: 18938218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of smooth pursuit-related neuronal responses in the DLPN and NRTP of the rhesus macaque.
    Ono S; Das VE; Economides JR; Mustari MJ
    J Neurophysiol; 2005 Jan; 93(1):108-16. PubMed ID: 15317840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrast sensitivity during the initiation of smooth pursuit eye movements.
    Schütz AC; Braun DI; Gegenfurtner KR
    Vision Res; 2007 Sep; 47(21):2767-77. PubMed ID: 17765281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the cerebellar dorsal vermis in vergence eye movements in monkeys.
    Nitta T; Akao T; Kurkin S; Fukushima K
    Cereb Cortex; 2008 May; 18(5):1042-57. PubMed ID: 17716988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor scaling by viewing distance of early visual motion signals during smooth pursuit.
    Zhou HH; Wei M; Angelaki DE
    J Neurophysiol; 2002 Nov; 88(5):2880-5. PubMed ID: 12424322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oculomotor control in children who were born very prematurely.
    Newsham D; Knox PC; Cooke RW
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2595-601. PubMed ID: 17525189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.