These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18164137)

  • 1. Alpha calcium/calmodulin dependent protein kinase II in learning-dependent plasticity of mouse somatosensory cortex.
    Skibinska-Kijek A; Radwanska A; Kossut M
    Neuroscience; 2008 Feb; 151(3):750-7. PubMed ID: 18164137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of alpha-CaMKII autophosphorylation in neocortical experience-dependent plasticity.
    Glazewski S; Giese KP; Silva A; Fox K
    Nat Neurosci; 2000 Sep; 3(9):911-8. PubMed ID: 10966622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of alphaCaMKII mutation on hippocampal learning and changes in intrinsic neuronal excitability.
    Ohno M; Sametsky EA; Silva AJ; Disterhoft JF
    Eur J Neurosci; 2006 Apr; 23(8):2235-40. PubMed ID: 16630070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impairment of experience-dependent cortical plasticity in aged mice.
    Liguz-Lecznar M; Siucinska E; Zakrzewska R; Kossut M
    Neurobiol Aging; 2011 Oct; 32(10):1896-905. PubMed ID: 20005597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alphaCaMKII Is essential for cerebellar LTD and motor learning.
    Hansel C; de Jeu M; Belmeguenai A; Houtman SH; Buitendijk GH; Andreev D; De Zeeuw CI; Elgersma Y
    Neuron; 2006 Sep; 51(6):835-43. PubMed ID: 16982427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning-induced plasticity of cortical representations does not affect GAD65 mRNA expression and immunolabeling of cortical neuropil.
    Lech M; Skibinska A; Siucinska E; Kossut M
    Brain Res; 2005 May; 1044(2):266-71. PubMed ID: 15885225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlphaCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory.
    Irvine EE; Vernon J; Giese KP
    Nat Neurosci; 2005 Apr; 8(4):411-2. PubMed ID: 15778710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experience-dependent changes in cortical whisker representation in the adult mouse: a 2-deoxyglucose study.
    Siucinska E; Kossut M
    Neuroscience; 2004; 127(4):961-71. PubMed ID: 15312908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain.
    Vazdarjanova A; Ramirez-Amaya V; Insel N; Plummer TK; Rosi S; Chowdhury S; Mikhael D; Worley PF; Guzowski JF; Barnes CA
    J Comp Neurol; 2006 Sep; 498(3):317-29. PubMed ID: 16871537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential regulation of cortical NMDA receptor subunits by sensory learning.
    Skibinska A; Lech M; Kossut M
    Brain Res; 2005 Dec; 1065(1-2):26-36. PubMed ID: 16309636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-Component Structural Plasticity Mediated by αCaMKII Autophosphorylation on Basal Dendrites of Cortical Layer 2/3 Neurones.
    Seaton G; Hodges G; de Haan A; Grewal A; Pandey A; Kasai H; Fox K
    J Neurosci; 2020 Mar; 40(11):2228-2245. PubMed ID: 32001612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of hippocampal Ca2+/calmodulin-dependent protein kinase II improves spatial memory.
    Poulsen DJ; Standing D; Bullshields K; Spencer K; Micevych PE; Babcock AM
    J Neurosci Res; 2007 Mar; 85(4):735-9. PubMed ID: 17171706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PSD95 protein level rises in murine somatosensory cortex after sensory training.
    Skibinska A; Lech M; Kossut M
    Neuroreport; 2001 Sep; 12(13):2907-10. PubMed ID: 11588600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice.
    Pak JH; Huang FL; Li J; Balschun D; Reymann KG; Chiang C; Westphal H; Huang KP
    Proc Natl Acad Sci U S A; 2000 Oct; 97(21):11232-7. PubMed ID: 11016969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in signaling pathways regulating neuroplasticity induced by neurokinin 1 receptor knockout.
    Musazzi L; Perez J; Hunt SP; Racagni G; Popoli M
    Eur J Neurosci; 2005 Mar; 21(5):1370-8. PubMed ID: 15813946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photothrombotic infarct impairs experience-dependent plasticity in neighboring cortex.
    Jablonka JA; Witte OW; Kossut M
    Neuroreport; 2007 Jan; 18(2):165-9. PubMed ID: 17301683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylcholine-dependent potentiation of temporal frequency representation in the barrel cortex does not depend on response magnitude during conditioning.
    Shulz DE; Ego-Stengel V; Ahissar E
    J Physiol Paris; 2003; 97(4-6):431-9. PubMed ID: 15242655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term sensory learning does not alter parvalbumin neurons in the barrel cortex of adult mice: a double-labeling study.
    Siucinska E; Kossut M
    Neuroscience; 2006; 138(2):715-24. PubMed ID: 16413119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation.
    Hardingham N; Glazewski S; Pakhotin P; Mizuno K; Chapman PF; Giese KP; Fox K
    J Neurosci; 2003 Jun; 23(11):4428-36. PubMed ID: 12805283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced plasticity of cortical whisker representation in adult tenascin-C-deficient mice after vibrissectomy.
    Cybulska-Klosowicz A; Zakrzewska R; Pyza E; Kossut M; Schachner M
    Eur J Neurosci; 2004 Sep; 20(6):1538-44. PubMed ID: 15355320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.