These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 18164494)

  • 1. Spinal cord injury: present and future therapeutic devices and prostheses.
    Giszter SF
    Neurotherapeutics; 2008 Jan; 5(1):147-62. PubMed ID: 18164494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.
    Alam M; Rodrigues W; Pham BN; Thakor NV
    Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural interfaces for the brain and spinal cord--restoring motor function.
    Jackson A; Zimmermann JB
    Nat Rev Neurol; 2012 Dec; 8(12):690-9. PubMed ID: 23147846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord.
    Jack AS; Hurd C; Martin J; Fouad K
    J Neurotrauma; 2020 Sep; 37(18):1933-1953. PubMed ID: 32438858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive approaches to functional recovery after spinal cord injury: Therapeutic targets and multimodal device interventions.
    Pizzolato C; Gunduz MA; Palipana D; Wu J; Grant G; Hall S; Dennison R; Zafonte RD; Lloyd DG; Teng YD
    Exp Neurol; 2021 May; 339():113612. PubMed ID: 33453213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectric Medicine and Devices for the Treatment of Spinal Cord Injury.
    Torregrosa T; Koppes RA
    Cells Tissues Organs; 2016; 202(1-2):6-22. PubMed ID: 27701161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroprosthetic technology for individuals with spinal cord injury.
    Collinger JL; Foldes S; Bruns TM; Wodlinger B; Gaunt R; Weber DJ
    J Spinal Cord Med; 2013 Jul; 36(4):258-72. PubMed ID: 23820142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical control of intraspinal microstimulation: Toward a new approach for restoration of function after spinal cord injury.
    Shahdoost S; Frost S; Dunham C; DeJong S; Barbay S; Nudo R; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2159-62. PubMed ID: 26736717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes.
    Kazim SF; Bowers CA; Cole CD; Varela S; Karimov Z; Martinez E; Ogulnick JV; Schmidt MH
    Mol Neurobiol; 2021 Nov; 58(11):5494-5516. PubMed ID: 34341881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of sensorimotor functions after spinal cord injury.
    Dietz V; Fouad K
    Brain; 2014 Mar; 137(Pt 3):654-67. PubMed ID: 24103913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Functional rehabilitation of spinal cord injured persons using neuroprostheses].
    Rupp R; Abel R
    Orthopade; 2005 Feb; 34(2):144-51. PubMed ID: 15650822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroprosthesis for individuals with spinal cord injury.
    Kilgore KL; Anderson KD; Peckham PH
    Neurol Res; 2023 Oct; 45(10):893-905. PubMed ID: 32727296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural regeneration therapy after spinal cord injury induces unique brain functional reorganizations in rhesus monkeys.
    Rao JS; Zhao C; Wei RH; Feng T; Bao SS; Zhao W; Tian Z; Liu Z; Yang ZY; Li XG
    Ann Med; 2022 Dec; 54(1):1867-1883. PubMed ID: 35792748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal cord injury.
    Sadowsky C; Volshteyn O; Schultz L; McDonald JW
    Disabil Rehabil; 2002 Sep; 24(13):680-7. PubMed ID: 12296983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection.
    Liu JL; Wang S; Chen ZH; Wu RJ; Yu HY; Yang SB; Xu J; Guo YN; Ding Y; Li G; Zeng X; Ma YH; Gong YL; Wu CR; Zhang LX; Zeng YS; Lai BQ
    Front Immunol; 2023; 14():1153516. PubMed ID: 37388732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats.
    Hayashi N; Himi N; Nakamura-Maruyama E; Okabe N; Sakamoto I; Hasegawa T; Miyamoto O
    Spine J; 2019 Jun; 19(6):1094-1105. PubMed ID: 30583107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprosthetic applications of electrical stimulation.
    Grill WM; Kirsch RF
    Assist Technol; 2000; 12(1):6-20. PubMed ID: 11067578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioengineered strategies for spinal cord repair.
    Nomura H; Tator CH; Shoichet MS
    J Neurotrauma; 2006; 23(3-4):496-507. PubMed ID: 16629632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.
    Nori S; Nakamura M; Okano H
    Prog Brain Res; 2017; 231():33-56. PubMed ID: 28554400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.