These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18164616)

  • 1. Determination of biogenic and fossil CO(2) emitted by waste incineration based on (14)CO(2) and mass balances.
    Mohn J; Szidat S; Fellner J; Rechberger H; Quartier R; Buchmann B; Emmenegger L
    Bioresour Technol; 2008 Sep; 99(14):6471-9. PubMed ID: 18164616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-14 based determination of the biogenic fraction of industrial CO(2) emissions - application and validation.
    Palstra SW; Meijer HA
    Bioresour Technol; 2010 May; 101(10):3702-10. PubMed ID: 20079631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fossil and biogenic CO₂ from waste incineration based on a yearlong radiocarbon study.
    Mohn J; Szidat S; Zeyer K; Emmenegger L
    Waste Manag; 2012 Aug; 32(8):1516-20. PubMed ID: 22542859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.
    Fellner J; Rechberger H
    Waste Manag; 2009 May; 29(5):1495-503. PubMed ID: 19157836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term sampling of CO(2) from waste-to-energy plants: (14)C determination methodology, data variation and uncertainty.
    Fuglsang K; Pedersen NH; Larsen AW; Astrup TF
    Waste Manag Res; 2014 Feb; 32(2):115-23. PubMed ID: 24519225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO₂ emission factors for waste incineration: Influence from source separation of recyclable materials.
    Larsen AW; Astrup T
    Waste Manag; 2011 Jul; 31(7):1597-605. PubMed ID: 21450451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.
    Schwarzböck T; Rechberger H; Cencic O; Fellner J
    Waste Manag; 2016 Mar; 49():263-271. PubMed ID: 26847720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.
    Astrup T; Møller J; Fruergaard T
    Waste Manag Res; 2009 Nov; 27(8):789-99. PubMed ID: 19748939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy recovery from waste incineration: assessing the importance of district heating networks.
    Fruergaard T; Christensen TH; Astrup T
    Waste Manag; 2010 Jul; 30(7):1264-72. PubMed ID: 20385481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenic carbon in combustible waste: waste composition, variability and measurement uncertainty.
    Larsen AW; Fuglsang K; Pedersen NH; Fellner J; Rechberger H; Astrup T
    Waste Manag Res; 2013 Oct; 31(10 Suppl):56-66. PubMed ID: 24008327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of reliable CO2 emission factors for waste-to-energy plants.
    Obermoser M; Fellner J; Rechberger H
    Waste Manag Res; 2009 Nov; 27(9):907-13. PubMed ID: 19808735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy use and carbon dioxide emissions from cropland production in the United States, 1990-2004.
    Nelson RG; Hellwinckel CM; Brandt CC; West TO; De La Torre Ugarte DG; Marland G
    J Environ Qual; 2009; 38(2):418-25. PubMed ID: 19202012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for determining the biomass content of waste.
    Staber W; Flamme S; Feltner J
    Waste Manag Res; 2008 Feb; 26(1):78-87. PubMed ID: 18338704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved method for calculating CO
    Liu G; Huang Q; Song K; Pan Y; Zhang H
    Waste Manag; 2024 Feb; 174():164-173. PubMed ID: 38056365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hazardous waste incineration in context with carbon dioxide.
    Reinhardt T; Richers U; Suchomel H
    Waste Manag Res; 2008 Feb; 26(1):88-95. PubMed ID: 18338705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
    Vanneste J; Van Gerven T; Vander Putten E; Van der Bruggen B; Helsen L
    Sci Total Environ; 2011 Sep; 409(19):3595-602. PubMed ID: 21719072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.
    Consonni S; Giugliano M; Grosso M
    Waste Manag; 2005; 25(2):123-35. PubMed ID: 15737710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of municipal solid waste classification in Korea based on fossil carbon fraction.
    Lee J; Kang S; Kim S; Kim KH; Jeon EC
    J Air Waste Manag Assoc; 2015 Oct; 65(10):1256-60. PubMed ID: 26252193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative strategies for energy recovery from municipal solid waste Part B: Emission and cost estimates.
    Consonni S; Giugliano M; Grosso M
    Waste Manag; 2005; 25(2):137-48. PubMed ID: 15737711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.