These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18164758)

  • 1. Functionalised amyloid fibrils for roles in cell adhesion.
    Gras SL; Tickler AK; Squires AM; Devlin GL; Horton MA; Dobson CM; MacPhee CE
    Biomaterials; 2008 Apr; 29(11):1553-62. PubMed ID: 18164758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional fibrils derived from the peptide TTR1-cycloRGDfK that target cell adhesion and spreading.
    Bongiovanni MN; Scanlon DB; Gras SL
    Biomaterials; 2011 Sep; 32(26):6099-110. PubMed ID: 21636126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale click-reactive scaffolds from peptide self-assembly.
    Guttenplan APM; Young LJ; Matak-Vinkovic D; Kaminski CF; Knowles TPJ; Itzhaki LS
    J Nanobiotechnology; 2017 Oct; 15(1):70. PubMed ID: 28985740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a protein array on amyloid-like fibrils using co-assembly of designed peptides.
    Kodama H; Matsumura S; Yamashita T; Mihara H
    Chem Commun (Camb); 2004 Dec; (24):2876-7. PubMed ID: 15599451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncore residues influence the kinetics of functional TTR(105-115)-based amyloid fibril assembly.
    Bongiovanni MN; Puri D; Goldie KN; Gras SL
    J Mol Biol; 2012 Aug; 421(2-3):256-69. PubMed ID: 22198409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic topography and chemistry control cell attachment to amyloid fibrils.
    Reynolds NP; Charnley M; Bongiovanni MN; Hartley PG; Gras SL
    Biomacromolecules; 2015 May; 16(5):1556-65. PubMed ID: 25871317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the polymorphism of amyloid-like fibrils formed by region 20-29 of amylin revealed by solid-state NMR and X-ray fiber diffraction.
    Madine J; Jack E; Stockley PG; Radford SE; Serpell LC; Middleton DA
    J Am Chem Soc; 2008 Nov; 130(45):14990-5001. PubMed ID: 18937465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils.
    Sawyer EB; Claessen D; Haas M; Hurgobin B; Gras SL
    PLoS One; 2011 Apr; 6(4):e18839. PubMed ID: 21526199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive TTR105-115-based amyloid fibrils reduce the viability of mammalian cells.
    Bongiovanni MN; Gras SL
    Biomaterials; 2015 Apr; 46():105-16. PubMed ID: 25678120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils.
    Inoue M; Konno T; Tainaka K; Nakata E; Yoshida HO; Morii T
    Biochemistry; 2012 Feb; 51(7):1396-406. PubMed ID: 22304362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet.
    Ohnishi S; Koide A; Koide S
    J Mol Biol; 2000 Aug; 301(2):477-89. PubMed ID: 10926522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis.
    Jaikaran ET; Higham CE; Serpell LC; Zurdo J; Gross M; Clark A; Fraser PE
    J Mol Biol; 2001 May; 308(3):515-25. PubMed ID: 11327784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for Structural Analysis of Amyloid Fibrils in Misfolding Diseases.
    Vadukul DM; Al-Hilaly YK; Serpell LC
    Methods Mol Biol; 2019; 1873():109-122. PubMed ID: 30341606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of designed peptides that undergo structural transition from alpha helix to beta sheet and amyloid fibril formation.
    Takahashi Y; Ueno A; Mihara H
    Structure; 2000 Sep; 8(9):915-25. PubMed ID: 10986459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorphism in disease-related apolipoprotein C-II amyloid fibrils: a structural model for rod-like fibrils.
    Zlatic CO; Mao Y; Todorova N; Mok YF; Howlett GJ; Yarovsky I; Gooley PR; Griffin MDW
    FEBS J; 2018 Aug; 285(15):2799-2812. PubMed ID: 29791776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and activity of multifunctional fibrils using receptor-specific small peptides.
    Ohga Y; Katagiri F; Takeyama K; Hozumi K; Kikkawa Y; Nishi N; Nomizu M
    Biomaterials; 2009 Dec; 30(35):6731-8. PubMed ID: 19765823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro amyloid fibril formation by synthetic peptides corresponding to the amino terminus of apoSAA isoforms from amyloid-susceptible and amyloid-resistant mice.
    Kirschner DA; Elliott-Bryant R; Szumowski KE; Gonnerman WA; Kindy MS; Sipe JD; Cathcart ES
    J Struct Biol; 1998 Dec; 124(1):88-98. PubMed ID: 9931277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization and biological properties of the amyloidogenic elastin-like peptide (VGGVG)3.
    Moscarelli P; Boraldi F; Bochicchio B; Pepe A; Salvi AM; Quaglino D
    Matrix Biol; 2014 Jun; 36():15-27. PubMed ID: 24686253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Requirement of hA5G18 Peptide (DDFVFYVGGYPS) from Laminin α5 Chain for Amyloid-like Fibril Formation and Cell Adhesion.
    Zhang G; Yamada Y; Kumai J; Hamada K; Kikkawa Y; Nomizu M
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.