BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 18165255)

  • 1. Propulsive performance of biologically inspired flapping foils at high Reynolds numbers.
    Techet AH
    J Exp Biol; 2008 Jan; 211(Pt 2):274-9. PubMed ID: 18165255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV; Anderson EJ; Tangorra J; Madden PG
    J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-line motion causes high thrust and efficiency in flapping foils that use power downstroke.
    Licht SC; Wibawa MS; Hover FS; Triantafyllou MS
    J Exp Biol; 2010 Jan; 213(1):63-71. PubMed ID: 20008363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency.
    Taylor GK; Nudds RL; Thomas AL
    Nature; 2003 Oct; 425(6959):707-11. PubMed ID: 14562101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How are Strouhal number, drag, and efficiency adjusted in high level underwater monofin-swimming?
    Nicolas G; Bideau B; Colobert B; Berton E
    Hum Mov Sci; 2007 Jun; 26(3):426-42. PubMed ID: 17509711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 May; 212(Pt 10):1506-18. PubMed ID: 19411544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex-wake interactions of a flapping foil that models animal swimming and flight.
    Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance.
    Fish FE
    J Exp Biol; 1998 Oct; 201(Pt 20):2867-77. PubMed ID: 9866875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL; Dyke GJ
    Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The implications of low-speed fixed-wing aerofoil measurements on the analysis and performance of flapping bird wings.
    Spedding GR; Hedenström AH; McArthur J; Rosén M
    J Exp Biol; 2008 Jan; 211(Pt 2):215-23. PubMed ID: 18165249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofluiddynamic scaling of flapping, spinning and translating fins and wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2691-704. PubMed ID: 19648414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach.
    Richards CT
    J Exp Biol; 2008 Oct; 211(Pt 19):3181-94. PubMed ID: 18805818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bio-inspired study on tidal energy extraction with flexible flapping wings.
    Liu W; Xiao Q; Cheng F
    Bioinspir Biomim; 2013 Sep; 8(3):036011. PubMed ID: 23981650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal propulsive flapping in Stokes flows.
    Was L; Lauga E
    Bioinspir Biomim; 2014 Mar; 9(1):016001. PubMed ID: 24343130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new system for analyzing swim fin propulsion based on human kinematic data.
    Nicolas G; Bideau B; Bideau N; Colobert B; Le Guerroue G; Delamarche P
    J Biomech; 2010 Jul; 43(10):1884-9. PubMed ID: 20409550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.