These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 18165370)
1. Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Li GQ; Li SS; Zhang ML; Wang J; Zhu L; Liang FL; Liu RL; Ma T Appl Environ Microbiol; 2008 Feb; 74(4):971-6. PubMed ID: 18165370 [TBL] [Abstract][Full Text] [Related]
2. Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon. Li GQ; Ma T; Li SS; Li H; Liang FL; Liu RL Biosci Biotechnol Biochem; 2007 Apr; 71(4):849-54. PubMed ID: 17420595 [TBL] [Abstract][Full Text] [Related]
3. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Duarte GF; Rosado AS; Seldin L; de Araujo W; van Elsas JD Appl Environ Microbiol; 2001 Mar; 67(3):1052-62. PubMed ID: 11229891 [TBL] [Abstract][Full Text] [Related]
4. [Co-expression of Rhodococcus sp. DS-3 dszABC and dszD gene with incompatible plasmids in Escherichia coli]. Li GQ; Ma T; Li JH; Li H; Liu RL Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):275-9. PubMed ID: 16736591 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Truncated dsz Operon Responsible for Dibenzothiophene Biodesulfurization in Rhodococcus sp. FUM94. Khosravinia S; Mahdavi MA; Gheshlaghi R; Dehghani H Appl Biochem Biotechnol; 2018 Mar; 184(3):885-896. PubMed ID: 28918586 [TBL] [Abstract][Full Text] [Related]
6. The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate. Tanaka Y; Yoshikawa O; Maruhashi K; Kurane R Arch Microbiol; 2002 Nov; 178(5):351-7. PubMed ID: 12375103 [TBL] [Abstract][Full Text] [Related]
7. [Comparison of the desulfurization activity among several bacteria and analysis of the conservation of their desulfurization genes]. Xiong XC; Li WL; Li X; Xing JM; Liu HZ Wei Sheng Wu Xue Bao; 2005 Oct; 45(5):733-7. PubMed ID: 16342766 [TBL] [Abstract][Full Text] [Related]
8. Genomic structure and promoter analysis of the dsz operon for dibenzothiophene biodesulfurization from Gordonia alkanivorans RIPI90A. Shavandi M; Sadeghizadeh M; Khajeh K; Mohebali G; Zomorodipour A Appl Microbiol Biotechnol; 2010 Jul; 87(4):1455-61. PubMed ID: 20414649 [TBL] [Abstract][Full Text] [Related]
9. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Piddington CS; Kovacevich BR; Rambosek J Appl Environ Microbiol; 1995 Feb; 61(2):468-75. PubMed ID: 7574582 [TBL] [Abstract][Full Text] [Related]
10. Advancing Desulfurization in the Model Biocatalyst Martzoukou O; Amillis S; Glekas PD; Breyanni D; Avgeris M; Scorilas A; Kekos D; Pachnos M; Mavridis G; Mamma D; Hatzinikolaou DG Appl Environ Microbiol; 2023 Feb; 89(2):e0197022. PubMed ID: 36688659 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization. Kayser KJ; Cleveland L; Park HS; Kwak JH; Kolhatkar A; Kilbane JJ Appl Microbiol Biotechnol; 2002 Sep; 59(6):737-45. PubMed ID: 12226734 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures. Kawaguchi H; Kobayashi H; Sato K J Biosci Bioeng; 2012 Mar; 113(3):360-6. PubMed ID: 22099375 [TBL] [Abstract][Full Text] [Related]
14. Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Davoodi-Dehaghani F; Vosoughi M; Ziaee AA Bioresour Technol; 2010 Feb; 101(3):1102-5. PubMed ID: 19819129 [TBL] [Abstract][Full Text] [Related]
15. [Construction and evaluation of a genetic engineered strain for biodesulfurization]. Li H; Yu Z; Xiong X; Li Y; Li X Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2034-40. PubMed ID: 19306572 [TBL] [Abstract][Full Text] [Related]
16. Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. Li MZ; Squires CH; Monticello DJ; Childs JD J Bacteriol; 1996 Nov; 178(22):6409-18. PubMed ID: 8932295 [TBL] [Abstract][Full Text] [Related]
17. Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Ma T; Li G; Li J; Liang F; Liu R Biotechnol Lett; 2006 Jul; 28(14):1095-100. PubMed ID: 16810451 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of Microbial Biodesulfurization via Genetic Engineering and Adaptive Evolution. Wang J; Butler RR; Wu F; Pombert JF; Kilbane JJ; Stark BC PLoS One; 2017; 12(1):e0168833. PubMed ID: 28060828 [TBL] [Abstract][Full Text] [Related]
19. A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Xi L; Squires CH; Monticello DJ; Childs JD Biochem Biophys Res Commun; 1997 Jan; 230(1):73-5. PubMed ID: 9020064 [TBL] [Abstract][Full Text] [Related]
20. Comparative studies of phenotypic and genetic characteristics between two desulfurizing isolates of Rhodococcus erythropolis and the well-characterized R. erythropolis strain IGTS8. Santos SC; Alviano DS; Alviano CS; Goulart FR; de Pádula M; Leitão AC; Martins OB; Ribeiro CM; Sassaki MY; Matta CP; Bevilaqua J; Sebastián GV; Seldin L J Ind Microbiol Biotechnol; 2007 Jun; 34(6):423-31. PubMed ID: 17333091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]