BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1816548)

  • 1. Differentiation of extracutaneous melanocytes in embryos of the turtle, Trionyx sinensis japonicus.
    Hou L; Takeuchi T
    Pigment Cell Res; 1991 Oct; 4(4):158-62. PubMed ID: 1816548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melanoblast development coincides with the late emerging cells from the dorsal neural tube in turtle Trachemys scripta.
    Rice R; Cebra-Thomas J; Haugas M; Partanen J; Rice DPC; Gilbert SF
    Sci Rep; 2017 Sep; 7(1):12063. PubMed ID: 28935865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turtle lung cells produce a melanization-stimulating activity that promotes melanocytic differentiation of avian neural crest cells.
    Hou L; Kwon BS
    Pigment Cell Res; 1995 Apr; 8(2):113-9. PubMed ID: 7544895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of local tissue environment on the differentiation of neural crest cells in turtle, with special reference to understanding the spatial distribution of pigment cells.
    Hou L
    Pigment Cell Res; 1999 Apr; 12(2):81-8. PubMed ID: 10231195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of reptilian neural crest cells in vitro.
    Hou L; Takeuchi T
    In Vitro Cell Dev Biol; 1992 May; 28A(5):348-54. PubMed ID: 1317837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines.
    Chang CH; Tsai RK; Tsai MH; Lin YH; Hirobe T
    J Dermatol Sci; 2014 Aug; 75(2):100-8. PubMed ID: 24815018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules.
    Faraco CD; Vaz SA; Pástor MV; Erickson CA
    Dev Dyn; 2001 Mar; 220(3):212-25. PubMed ID: 11241830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
    Dupin E
    Biol Aujourdhui; 2011; 205(1):53-61. PubMed ID: 21501576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melanoblast-tissue interactions and the development of pigment pattern in Xenopus larvae.
    Macmillan GJ
    J Embryol Exp Morphol; 1976 Jun; 35(3):463-84. PubMed ID: 947992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human melanoblasts in culture: expression of BRN2 and synergistic regulation by fibroblast growth factor-2, stem cell factor, and endothelin-3.
    Cook AL; Donatien PD; Smith AG; Murphy M; Jones MK; Herlyn M; Bennett DC; Leonard JH; Sturm RA
    J Invest Dermatol; 2003 Nov; 121(5):1150-9. PubMed ID: 14708619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piebald lethal (sl) acts early to disrupt the development of neural crest-derived melanocytes.
    Pavan WJ; Tilghman SM
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7159-63. PubMed ID: 8041763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of genic substitution at the brown locus on the differentiation of epidermal melanocytes in newborn mouse skin.
    Hirobe T
    Anat Rec; 1984 Aug; 209(4):425-32. PubMed ID: 6476413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor beta1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling.
    Kawakami T; Soma Y; Kawa Y; Ito M; Yamasaki E; Watabe H; Hosaka E; Yajima K; Ohsumi K; Mizoguchi M
    J Invest Dermatol; 2002 Mar; 118(3):471-8. PubMed ID: 11874486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-autonomous and cell non-autonomous signaling through endothelin receptor B during melanocyte development.
    Hou L; Pavan WJ; Shin MK; Arnheiter H
    Development; 2004 Jul; 131(14):3239-47. PubMed ID: 15201217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The delayed entry of thoracic neural crest cells into the dorsolateral path is a consequence of the late emigration of melanogenic neural crest cells from the neural tube.
    Reedy MV; Faraco CD; Erickson CA
    Dev Biol; 1998 Aug; 200(2):234-46. PubMed ID: 9705230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histochemical survey of the distribution of the epidermal melanoblasts and melanocytes in the mouse during fetal and postnatal periods.
    Hirobe T
    Anat Rec; 1984 Apr; 208(4):589-94. PubMed ID: 6731864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White spotting phenotype induced by targeted REST disruption during neural crest specification to a melanocyte cell lineage.
    Aoki H; Hara A; Kunisada T
    Genes Cells; 2015 May; 20(5):439-49. PubMed ID: 25818501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations at the W locus affect survival of neural crest-derived melanocytes in the mouse.
    Cable J; Jackson IJ; Steel KP
    Mech Dev; 1995 Apr; 50(2-3):139-50. PubMed ID: 7619726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for reaching the differentiated state: Insights from neural crest-derived melanocytes.
    Cooper CD; Raible DW
    Semin Cell Dev Biol; 2009 Feb; 20(1):105-10. PubMed ID: 18935965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanogenesis of avian neural crest cells in vitro is influenced by external cues in the periorbital mesenchyme.
    Campbell S
    Development; 1989 Aug; 106(4):717-26. PubMed ID: 2562665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.