These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 18165684)
1. Conserved Asp-137 imparts flexibility to tropomyosin and affects function. Sumida JP; Wu E; Lehrer SS J Biol Chem; 2008 Mar; 283(11):6728-34. PubMed ID: 18165684 [TBL] [Abstract][Full Text] [Related]
2. Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule. Matyushenko AM; Artemova NV; Shchepkin DV; Kopylova GV; Bershitsky SY; Tsaturyan AK; Sluchanko NN; Levitsky DI FEBS J; 2014 Apr; 281(8):2004-16. PubMed ID: 24548721 [TBL] [Abstract][Full Text] [Related]
3. Conserved Asp-137 is important for both structure and regulatory functions of cardiac α-tropomyosin (α-TM) in a novel transgenic mouse model expressing α-TM-D137L. Yar S; Chowdhury SAK; Davis RT; Kobayashi M; Monasky MM; Rajan S; Wolska BM; Gaponenko V; Kobayashi T; Wieczorek DF; Solaro RJ J Biol Chem; 2013 Jun; 288(23):16235-16246. PubMed ID: 23609439 [TBL] [Abstract][Full Text] [Related]
4. Actin-tropomyosin activation of myosin subfragment 1 ATPase and thin filament cooperativity. The role of tropomyosin flexibility and end-to-end interactions. Lehrer SS; Golitsina NL; Geeves MA Biochemistry; 1997 Nov; 36(44):13449-54. PubMed ID: 9354612 [TBL] [Abstract][Full Text] [Related]
5. Abnormal movement of tropomyosin and response of myosin heads and actin during the ATPase cycle caused by the Arg167His, Arg167Gly and Lys168Glu mutations in TPM1 gene. Borovikov YS; Rysev NA; Chernev AA; Avrova SV; Karpicheva OE; Borys D; Śliwińska M; Moraczewska J Arch Biochem Biophys; 2016 Sep; 606():157-66. PubMed ID: 27480605 [TBL] [Abstract][Full Text] [Related]
6. Ca2+-induced rolling of tropomyosin in muscle thin filaments: the alpha- and beta-band hypothesis revisited. Holthauzen LM; Corrêa F; Farah CS J Biol Chem; 2004 Apr; 279(15):15204-13. PubMed ID: 14724287 [TBL] [Abstract][Full Text] [Related]
7. The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments. Sakuma A; Kimura-Sakiyama C; Onoue A; Shitaka Y; Kusakabe T; Miki M Biochemistry; 2006 Aug; 45(31):9550-8. PubMed ID: 16878989 [TBL] [Abstract][Full Text] [Related]
8. Regulatory properties of recombinant tropomyosins containing 5-hydroxytryptophan: Ca2+-binding to troponin results in a conformational change in a region of tropomyosin outside the troponin binding site. Farah CS; Reinach FC Biochemistry; 1999 Aug; 38(32):10543-51. PubMed ID: 10441151 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms of deregulation of the thin filament associated with the R167H and K168E substitutions in tropomyosin Tpm1.1. Borovikov YS; Rysev NA; Avrova SV; Karpicheva OE; Borys D; Moraczewska J Arch Biochem Biophys; 2017 Jan; 614():28-40. PubMed ID: 27956029 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of tropomyosin: flexible coiled-coil. Nitanai Y; Minakata S; Maeda K; Oda N; Maéda Y Adv Exp Med Biol; 2007; 592():137-51. PubMed ID: 17278362 [TBL] [Abstract][Full Text] [Related]
11. Effect of caldesmon on the position and myosin-induced movement of smooth muscle tropomyosin bound to actin. Graceffa P; Mazurkie A J Biol Chem; 2005 Feb; 280(6):4135-43. PubMed ID: 15504719 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin-T. Murakami K; Stewart M; Nozawa K; Tomii K; Kudou N; Igarashi N; Shirakihara Y; Wakatsuki S; Yasunaga T; Wakabayashi T Proc Natl Acad Sci U S A; 2008 May; 105(20):7200-5. PubMed ID: 18483193 [TBL] [Abstract][Full Text] [Related]
14. Conserved noncanonical residue Gly-126 confers instability to the middle part of the tropomyosin molecule. Nevzorov IA; Nikolaeva OP; Kainov YA; Redwood CS; Levitsky DI J Biol Chem; 2011 May; 286(18):15766-72. PubMed ID: 21454502 [TBL] [Abstract][Full Text] [Related]
15. Transmission of stability information through the N-domain of tropomyosin is interrupted by a stabilizing mutation (A109L) in the hydrophobic core of the stability control region (residues 97-118). Kirwan JP; Hodges RS J Biol Chem; 2014 Feb; 289(7):4356-66. PubMed ID: 24362038 [TBL] [Abstract][Full Text] [Related]
16. Basic residues within the cardiac troponin T C terminus are required for full inhibition of muscle contraction and limit activation by calcium. Johnson D; Zhu L; Landim-Vieira M; Pinto JR; Chalovich JM J Biol Chem; 2019 Dec; 294(51):19535-19545. PubMed ID: 31712308 [TBL] [Abstract][Full Text] [Related]
17. Ca(2+)-dependent, myosin subfragment 1-induced proximity changes between actin and the inhibitory region of troponin I. Kobayashi T; Kobayashi M; Collins JH Biochim Biophys Acta; 2001 Oct; 1549(2):148-54. PubMed ID: 11690651 [TBL] [Abstract][Full Text] [Related]
18. Regulation of actin-myosin interaction by conserved periodic sites of tropomyosin. Barua B; Winkelmann DA; White HD; Hitchcock-DeGregori SE Proc Natl Acad Sci U S A; 2012 Nov; 109(45):18425-30. PubMed ID: 23091026 [TBL] [Abstract][Full Text] [Related]
19. Specific sequences determine the stability and cooperativity of folding of the C-terminal half of tropomyosin. Paulucci AA; Hicks L; Machado A; Miranda MT; Kay CM; Farah CS J Biol Chem; 2002 Oct; 277(42):39574-84. PubMed ID: 12167616 [TBL] [Abstract][Full Text] [Related]
20. Aberrant movement of β-tropomyosin associated with congenital myopathy causes defective response of myosin heads and actin during the ATPase cycle. Borovikov YS; Avrova SV; Rysev NA; Sirenko VV; Simonyan AO; Chernev AA; Karpicheva OE; Piers A; Redwood CS Arch Biochem Biophys; 2015 Jul; 577-578():11-23. PubMed ID: 25978979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]