These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Flow Focusing: a versatile technology to produce size-controlled and specific-morphology microparticles. Martín-Banderas L; Flores-Mosquera M; Riesco-Chueca P; Rodríguez-Gil A; Cebolla A; Chávez S; Gañán-Calvo AM Small; 2005 Jul; 1(7):688-92. PubMed ID: 17193506 [TBL] [Abstract][Full Text] [Related]
5. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Choi S; Park JK Lab Chip; 2007 Jul; 7(7):890-7. PubMed ID: 17594009 [TBL] [Abstract][Full Text] [Related]
6. Sample concentration and impedance detection on a microfluidic polymer chip. Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of continuous flow nanosphere formation by controlled microfluidic transport. Laulicht B; Cheifetz P; Mathiowitz E; Tripathi A Langmuir; 2008 Sep; 24(17):9717-26. PubMed ID: 18681411 [TBL] [Abstract][Full Text] [Related]
8. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568 [TBL] [Abstract][Full Text] [Related]
9. Lock release lithography for 3D and composite microparticles. Bong KW; Pregibon DC; Doyle PS Lab Chip; 2009 Apr; 9(7):863-6. PubMed ID: 19294294 [TBL] [Abstract][Full Text] [Related]
10. Assembly of polystyrene microspheres and its application in cell micropatterning. Yap FL; Zhang Y Biomaterials; 2007 May; 28(14):2328-38. PubMed ID: 17306366 [TBL] [Abstract][Full Text] [Related]
11. Transport and reaction in microscale segmented gas-liquid flow. Günther A; Khan SA; Thalmann M; Trachsel F; Jensen KF Lab Chip; 2004 Aug; 4(4):278-86. PubMed ID: 15269792 [TBL] [Abstract][Full Text] [Related]
12. Towards designer microparticles: simultaneous control of anisotropy, shape, and size. Bhaskar S; Pollock KM; Yoshida M; Lahann J Small; 2010 Feb; 6(3):404-11. PubMed ID: 19937608 [TBL] [Abstract][Full Text] [Related]
13. Double emulsions with controlled morphology by microgel scaffolding. Thiele J; Seiffert S Lab Chip; 2011 Sep; 11(18):3188-92. PubMed ID: 21796282 [TBL] [Abstract][Full Text] [Related]
14. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS; Song SH; Jung HI Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305 [TBL] [Abstract][Full Text] [Related]
15. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related]
16. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Park JS; Jung HI Anal Chem; 2009 Oct; 81(20):8280-8. PubMed ID: 19775116 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic emulsification and sorting assisted preparation of monodisperse chitosan microparticles. Yang CH; Lin YS; Huang KS; Huang YC; Wang EC; Jhong JY; Kuo CY Lab Chip; 2009 Jan; 9(1):145-50. PubMed ID: 19209347 [TBL] [Abstract][Full Text] [Related]