These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
840 related articles for article (PubMed ID: 18166197)
1. Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. Lacal J; Guazzaroni ME; Busch A; Krell T; Ramos JL J Mol Biol; 2008 Feb; 376(2):325-37. PubMed ID: 18166197 [TBL] [Abstract][Full Text] [Related]
2. The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Lacal J; Busch A; Guazzaroni ME; Krell T; Ramos JL Proc Natl Acad Sci U S A; 2006 May; 103(21):8191-6. PubMed ID: 16702539 [TBL] [Abstract][Full Text] [Related]
3. Two levels of cooperativeness in the binding of TodT to the tod operon promoter. Lacal J; Guazzaroni ME; Gutiérrez-del-Arroyo P; Busch A; Vélez M; Krell T; Ramos JL J Mol Biol; 2008 Dec; 384(5):1037-47. PubMed ID: 18950641 [TBL] [Abstract][Full Text] [Related]
4. Catabolite repression of the TodS/TodT two-component system and effector-dependent transphosphorylation of TodT as the basis for toluene dioxygenase catabolic pathway control. Busch A; Lacal J; Silva-Jímenez H; Krell T; Ramos JL J Bacteriol; 2010 Aug; 192(16):4246-50. PubMed ID: 20543072 [TBL] [Abstract][Full Text] [Related]
5. Catabolism of phenylalanine by Pseudomonas putida: the NtrC-family PhhR regulator binds to two sites upstream from the phhA gene and stimulates transcription with sigma70. Herrera MC; Ramos JL J Mol Biol; 2007 Mar; 366(5):1374-86. PubMed ID: 17217960 [TBL] [Abstract][Full Text] [Related]
6. Construction of a prototype two-component system from the phosphorelay system TodS/TodT. Silva-Jiménez H; Ramos JL; Krell T Protein Eng Des Sel; 2012 Apr; 25(4):159-69. PubMed ID: 22308529 [TBL] [Abstract][Full Text] [Related]
7. PhhR binds to target sequences at different distances with respect to RNA polymerase in order to activate transcription. Herrera MC; Krell T; Zhang X; Ramos JL J Mol Biol; 2009 Dec; 394(3):576-86. PubMed ID: 19781550 [TBL] [Abstract][Full Text] [Related]
8. Identification and expression of the cym, cmt, and tod catabolic genes from Pseudomonas putida KL47: expression of the regulatory todST genes as a factor for catabolic adaptation. Lee K; Ryu EK; Choi KS; Cho MC; Jeong JJ; Choi EN; Lee SO; Yoon DY; Hwang I; Kim CK J Microbiol; 2006 Apr; 44(2):192-9. PubMed ID: 16728956 [TBL] [Abstract][Full Text] [Related]
9. Complex interplay between the LysR-type regulator AtzR and its binding site mediates atzDEF activation in response to two distinct signals. Porrúa O; Platero AI; Santero E; Del Solar G; Govantes F Mol Microbiol; 2010 Apr; 76(2):331-47. PubMed ID: 20199600 [TBL] [Abstract][Full Text] [Related]
10. Binding sites of VanRB and sigma70 RNA polymerase in the vanB vancomycin resistance operon of Enterococcus faecium BM4524. Depardieu F; Courvalin P; Kolb A Mol Microbiol; 2005 Jul; 57(2):550-64. PubMed ID: 15978084 [TBL] [Abstract][Full Text] [Related]
11. Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins. Holtham CA; Jumel K; Miller CM; Harding SE; Baumberg S; Stockley PG J Mol Biol; 1999 Jun; 289(4):707-27. PubMed ID: 10369757 [TBL] [Abstract][Full Text] [Related]
12. Solution structure of the C-terminal transcriptional activator domain of FixJ from Sinorhizobium meliloti and its recognition of the fixK promoter. Kurashima-Ito K; Kasai Y; Hosono K; Tamura K; Oue S; Isogai M; Ito Y; Nakamura H; Shiro Y Biochemistry; 2005 Nov; 44(45):14835-44. PubMed ID: 16274231 [TBL] [Abstract][Full Text] [Related]
13. Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation. Carl B; Arnold A; Hauer B; Fetzner S Gene; 2004 Apr; 331():177-88. PubMed ID: 15094204 [TBL] [Abstract][Full Text] [Related]
14. Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum. Schaaf S; Bott M J Bacteriol; 2007 Jul; 189(14):5002-11. PubMed ID: 17496102 [TBL] [Abstract][Full Text] [Related]
15. A nucleoprotein activation complex between the leucine-responsive regulatory protein and DNA upstream of the gltBDF operon in Escherichia coli. Wiese DE; Ernsting BR; Blumenthal RM; Matthews RG J Mol Biol; 1997 Jul; 270(2):152-68. PubMed ID: 9236118 [TBL] [Abstract][Full Text] [Related]
16. Characterization of HbpR binding by site-directed mutagenesis of its DNA-binding site and by deletion of the effector domain. Tropel D; van der Meer JR FEBS J; 2005 Apr; 272(7):1756-66. PubMed ID: 15794762 [TBL] [Abstract][Full Text] [Related]
17. Pivotal roles for the receiver domain in the mechanism of action of the response regulator RamR of Streptomyces coelicolor. O'Connor TJ; Nodwell JR J Mol Biol; 2005 Sep; 351(5):1030-47. PubMed ID: 16051268 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS. Carl B; Fetzner S Appl Environ Microbiol; 2005 Dec; 71(12):8618-26. PubMed ID: 16332855 [TBL] [Abstract][Full Text] [Related]
19. Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation. Withey JH; DiRita VJ Mol Microbiol; 2005 May; 56(4):1062-77. PubMed ID: 15853890 [TBL] [Abstract][Full Text] [Related]
20. Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Busch A; Lacal J; Martos A; Ramos JL; Krell T Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13774-9. PubMed ID: 17693554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]