These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18166222)

  • 1. The role of heparin self-association in the gelation of heparin-functionalized polymers.
    Spinelli FJ; Kiick KL; Furst EM
    Biomaterials; 2008 Apr; 29(10):1299-306. PubMed ID: 18166222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological characterization of polysaccharide-poly(ethylene glycol) star copolymer hydrogels.
    Yamaguchi N; Chae BS; Zhang L; Kiick KL; Furst EM
    Biomacromolecules; 2005; 6(4):1931-40. PubMed ID: 16004430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor delivery systems.
    Nie T; Baldwin A; Yamaguchi N; Kiick KL
    J Control Release; 2007 Oct; 122(3):287-96. PubMed ID: 17582636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions.
    Zhang L; Furst EM; Kiick KL
    J Control Release; 2006 Aug; 114(2):130-42. PubMed ID: 16890321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalizing electrospun fibers with biologically relevant macromolecules.
    Casper CL; Yamaguchi N; Kiick KL; Rabolt JF
    Biomacromolecules; 2005; 6(4):1998-2007. PubMed ID: 16004438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-molecular weight molluscan glycosaminoglycan from bivalve Katelysia opima (Gmelin).
    Vijayabaskar P; Balasubramanian T; Somasundaram ST
    Methods Find Exp Clin Pharmacol; 2008 Apr; 30(3):175-80. PubMed ID: 18597000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfated polysaccharide heparin used as carrier to load hydrophobic lappaconitine.
    Sun W; Saldaña MD; Fan L; Zhao Y; Dong T; Jin Y; Zhang J
    Int J Biol Macromol; 2016 Mar; 84():275-80. PubMed ID: 26706841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration.
    Fu L; Zhang F; Li G; Onishi A; Bhaskar U; Sun P; Linhardt RJ
    J Pharm Sci; 2014 May; 103(5):1375-83. PubMed ID: 24634007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide-poly(ethylene glycol) star copolymer as a scaffold for the production of bioactive hydrogels.
    Yamaguchi N; Kiick KL
    Biomacromolecules; 2005; 6(4):1921-30. PubMed ID: 16004429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heparin as a Bundler in a Self-Assembled Fibrous Network of Functionalized Protein-Based Polymers.
    Włodarczyk-Biegun MK; Slingerland CJ; Werten MW; van Hees IA; de Wolf FA; de Vries R; Stuart MA; Kamperman M
    Biomacromolecules; 2016 Jun; 17(6):2063-72. PubMed ID: 27129090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of currently marketed heparin products: analysis of molecular weight and heparinase-I digest patterns.
    Sommers CD; Ye H; Kolinski RE; Nasr M; Buhse LF; Al-Hakim A; Keire DA
    Anal Bioanal Chem; 2011 Nov; 401(8):2445-54. PubMed ID: 21901459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelation of Covalently Cross-Linked PEG-Heparin Hydrogels.
    Schultz KM; Baldwin AD; Kiick KL; Furst EM
    Macromolecules; 2009 Jul; 42(14):5310-5316. PubMed ID: 21494422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo investigation of low molecular weight heparin-alginate beads for oral administration.
    Iskenderoğlu C; Acartürk F; Erdoğan D; Bardakçi Y
    J Drug Target; 2013 May; 21(4):389-406. PubMed ID: 23350807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of gelatin hydrogels incorporating low-molecular-weight heparin for anti-fibrotic therapy.
    Saito T; Tabata Y
    Acta Biomater; 2012 Feb; 8(2):646-52. PubMed ID: 22079782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood compatible graphene/heparin conjugate through noncovalent chemistry.
    Lee DY; Khatun Z; Lee JH; Lee YK; In I
    Biomacromolecules; 2011 Feb; 12(2):336-41. PubMed ID: 21218769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolonged subcutaneous delivery of low molecular weight heparin based on thermoresponsive hydrogels with chitosan nanocomplexes: Design, in vitro evaluation, and cytotoxicity studies.
    Radivojša Matanović M; Grabnar I; Gosenca M; Grabnar PA
    Int J Pharm; 2015 Jul; 488(1-2):127-35. PubMed ID: 25912230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometry of heparin binding to basic fibroblast growth factor.
    Arakawa T; Wen J; Philo JS
    Arch Biochem Biophys; 1994 Jan; 308(1):267-73. PubMed ID: 8311463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification of silk fibroin fabric using layer-by-layer polyelectrolyte deposition and heparin immobilization for small-diameter vascular prostheses.
    Elahi MF; Guan G; Wang L; Zhao X; Wang F; King MW
    Langmuir; 2015 Mar; 31(8):2517-26. PubMed ID: 25671295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors.
    Chung YI; Tae G; Hong Yuk S
    Biomaterials; 2006 Apr; 27(12):2621-6. PubMed ID: 16360204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of low-molecular-weight heparin reversal by platelet factor 4.
    Fiore MM; Mackie IM
    Thromb Res; 2009 May; 124(1):149-55. PubMed ID: 19195682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.