BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18166254)

  • 1. Essential versus potentially toxic dietary substances: a seasonal comparison of essential fatty acids and methyl mercury concentrations in the planktonic food web.
    Kainz M; Arts MT; Mazumder A
    Environ Pollut; 2008 Sep; 155(2):262-70. PubMed ID: 18166254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish.
    Kainz M; Telmer K; Mazumder A
    Sci Total Environ; 2006 Sep; 368(1):271-82. PubMed ID: 16226794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terrestrial organic matter increases zooplankton methylmercury accumulation in a brown-water boreal lake.
    Poste AE; Hoel CS; Andersen T; Arts MT; Færøvig PJ; Borgå K
    Sci Total Environ; 2019 Jul; 674():9-18. PubMed ID: 31003089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated temperature and browning increase dietary methylmercury, but decrease essential fatty acids at the base of lake food webs.
    Wu P; Kainz MJ; Valdés F; Zheng S; Winter K; Wang R; Branfireun B; Chen CY; Bishop K
    Sci Rep; 2021 Aug; 11(1):16859. PubMed ID: 34413329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of algal and bacterial diet on methyl mercury concentrations in zooplankton.
    Kainz M; Mazumder A
    Environ Sci Technol; 2005 Mar; 39(6):1666-72. PubMed ID: 15819223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganic and methylmercury: do they transfer along a tropical coastal food web?
    Kehrig HA; Seixas TG; Baêta AP; Malm O; Moreira I
    Mar Pollut Bull; 2010 Dec; 60(12):2350-6. PubMed ID: 20951393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The burning question: does burning before flooding lower methyl mercury production and bioaccumulation?
    Mailman M; Bodaly RA
    Sci Total Environ; 2006 Sep; 368(1):407-17. PubMed ID: 16263153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard.
    Jaeger I; Hop H; Gabrielsen GW
    Sci Total Environ; 2009 Aug; 407(16):4744-51. PubMed ID: 19454364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of eutrophication on mercury, selenium, and essential fatty acids in bighead carp (Hypophthalmichthys nobilis) from reservoirs of eastern China.
    Razavi NR; Arts MT; Qu M; Jin B; Ren W; Wang Y; Campbell LM
    Sci Total Environ; 2014 Nov; 499():36-46. PubMed ID: 25173860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aromatic hydrocarbons in the planktonic food webs of a subtropical shallow eutrophic lake in China.
    Tao Y; Yu J; Xue B; Yao S; Wang S
    Sci Total Environ; 2017 Apr; 583():447-457. PubMed ID: 28110880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury content and speciation in the plankton and benthos of Lake Superior.
    Back RC; Gorski PR; Cleckner LB; Hurley JP
    Sci Total Environ; 2003 Mar; 304(1-3):349-54. PubMed ID: 12663195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations.
    Wu P; Kainz M; Åkerblom S; Bravo AG; Sonesten L; Branfireun B; Deininger A; Bergström AK; Bishop K
    Sci Total Environ; 2019 Jun; 669():821-832. PubMed ID: 30897439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaccumulation and trophic transfer of methylmercury in Long Island Sound.
    Hammerschmidt CR; Fitzgerald WF
    Arch Environ Contam Toxicol; 2006 Oct; 51(3):416-24. PubMed ID: 16823518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of total mercury and methylmercury export from various Minnesota watersheds.
    Balogh SJ; Nollet YH; Offerman HJ
    Sci Total Environ; 2005 Mar; 340(1-3):261-70. PubMed ID: 15752506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem.
    Orihel DM; Paterson MJ; Blanchfield PJ; Bodaly RA; Gilmour CC; Hintelmann H
    Environ Pollut; 2008 Jul; 154(1):77-88. PubMed ID: 18272273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal analysis of net fluvial methylmercury loading in a dystrophic and a clear water lake.
    Mills RB; Bodek T; Paterson AM; Blais JM; Lean DR
    Sci Total Environ; 2009 Aug; 407(16):4696-702. PubMed ID: 19447474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web.
    Pickhardt PC; Folt CL; Chen CY; Klaue B; Blum JD
    Sci Total Environ; 2005 Mar; 339(1-3):89-101. PubMed ID: 15740761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of fish consumption as source of methylmercury should consider fish-meal-fed farmed fish and other animal foods.
    Dórea JG
    Environ Res; 2009 Jan; 109(1):131-2; discussion 133-4. PubMed ID: 19027108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach.
    Shanley JB; Alisa Mast M; Campbell DH; Aiken GR; Krabbenhoft DP; Hunt RJ; Walker JF; Schuster PF; Chalmers A; Aulenbach BT; Peters NE; Marvin-DiPasquale M; Clow DW; Shafer MM
    Environ Pollut; 2008 Jul; 154(1):143-54. PubMed ID: 18407389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.