These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18166254)

  • 21. Effects of intensive fishing on the structure of zooplankton communities and mercury levels.
    Masson S; Tremblay A
    Sci Total Environ; 2003 Mar; 304(1-3):377-90. PubMed ID: 12663198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of aquaculture on mercury and polyunsaturated fatty acids in fishes from reservoirs in Southwest China.
    Jing M; Lin D; Wu P; Kainz MJ; Bishop K; Yan H; Wang R; Wang Q; Li Q
    Environ Pollut; 2020 Feb; 257():113543. PubMed ID: 31753634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of mercury and methylmercury pollution with zebra mussel (Dreissena polymorpha) in the Ebro River (NE Spain) impacted by industrial hazardous dumps.
    Carrasco L; Díez S; Soto DX; Catalan J; Bayona JM
    Sci Total Environ; 2008 Dec; 407(1):178-84. PubMed ID: 18805569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lowered nutritional quality of plankton caused by global environmental changes.
    Lau DCP; Jonsson A; Isles PDF; Creed IF; Bergström AK
    Glob Chang Biol; 2021 Dec; 27(23):6294-6306. PubMed ID: 34520606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis.
    Wu P; Kainz MJ; Bravo AG; Åkerblom S; Sonesten L; Bishop K
    Sci Total Environ; 2019 Jan; 646():357-367. PubMed ID: 30055496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplankton.
    Jordan MP; Stewart AR; Eagles-Smith CA; Strecker AL
    Sci Total Environ; 2019 Jun; 667():601-612. PubMed ID: 30833259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mercury biomagnification in marine zooplankton food webs in Hudson Bay.
    Foster KL; Stern GA; Pazerniuk MA; Hickie B; Walkusz W; Wang F; Macdonald RW
    Environ Sci Technol; 2012 Dec; 46(23):12952-9. PubMed ID: 23157666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes.
    Strandberg U; Hiltunen M; Jelkänen E; Taipale SJ; Kainz MJ; Brett MT; Kankaala P
    Sci Total Environ; 2015 Dec; 536():858-865. PubMed ID: 26282609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Burrowing dragonfly larvae as biosentinels of methylmercury in freshwater food webs.
    Haro RJ; Bailey SW; Northwick RM; Rolfhus KR; Sandheinrich MB; Wiener JG
    Environ Sci Technol; 2013 Aug; 47(15):8148-56. PubMed ID: 23845042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of mercury speciation in Minnesota rivers and streams.
    Balogh SJ; Swain EB; Nollet YH
    Environ Pollut; 2008 Jul; 154(1):3-11. PubMed ID: 18262318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methylmercury bioaccumulation in invertebrates of boreal streams in Norway: effects of aqueous methylmercury and diet retention.
    de Wit HA; Kainz MJ; Lindholm M
    Environ Pollut; 2012 May; 164():235-41. PubMed ID: 22377901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ingestion and transfer of microplastics in the planktonic food web.
    Setälä O; Fleming-Lehtinen V; Lehtiniemi M
    Environ Pollut; 2014 Feb; 185():77-83. PubMed ID: 24220023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seasonal and inter-annual variations in methyl mercury concentrations in zooplankton from boreal lakes impacted by deforestation or natural forest fires.
    Garcia E; Carignan R; Lean DR
    Environ Monit Assess; 2007 Aug; 131(1-3):1-11. PubMed ID: 17171280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: a case study from Hongfeng Reservoir, Guizhou, China.
    He T; Feng X; Guo Y; Qiu G; Li Z; Liang L; Lu J
    Environ Pollut; 2008 Jul; 154(1):56-67. PubMed ID: 18158204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wetland influence on mercury fate and transport in a temperate forested watershed.
    Selvendiran P; Driscoll CT; Bushey JT; Montesdeoca MR
    Environ Pollut; 2008 Jul; 154(1):46-55. PubMed ID: 18215448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transfer of mercury in the marine food web of West Greenland.
    Rigét F; Møller P; Dietz R; Nielsen TG; Asmund G; Strand J; Larsen MM; Hobson KA
    J Environ Monit; 2007 Aug; 9(8):877-83. PubMed ID: 17671670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preliminary Estimations of Insect Mediated Transfers of Mercury and Physiologically Important Fatty Acids from Water to Land.
    Moyo S
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31940985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mercury and selenium in seston, marine plankton and fish (Sardinella brasiliensis) as a tool for understanding a tropical food web.
    Seixas TG; Moreira I; Kehrig HA
    Mar Pollut Bull; 2015 Dec; 101(1):366-369. PubMed ID: 26478456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors affecting methylmercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus.
    Le Jeune AH; Bourdiol F; Aldamman L; Perron T; Amyot M; Pinel-Alloul B
    Environ Pollut; 2012 Jun; 165():100-8. PubMed ID: 22420993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-proportional bioaccumulation of trace metals and metalloids in the planktonic food web of two Singapore coastal marine inlets with contrasting water residence times.
    Calbet A; Schmoker C; Russo F; Trottet A; Mahjoub MS; Larsen O; Tong HY; Drillet G
    Sci Total Environ; 2016 Aug; 560-561():284-94. PubMed ID: 27104581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.