These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18167032)

  • 1. Combined monitor for direct and indirect measurement of biofouling.
    Eguía E; Trueba A; Río-Calonge B; Girón A; Amieva JJ; Bielva C
    Biofouling; 2008; 24(2):75-86. PubMed ID: 18167032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portable pilot plant for evaluating marine biofouling growth and control in heat exchangers-condensers.
    Casanueva JF; Sánchez J; García-Morales JL; Casanueva-Robles T; López JA; Portela JR; Nebot E; Sales D
    Water Sci Technol; 2003; 47(5):99-104. PubMed ID: 12701913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigation of biofouling using electromagnetic fields in tubular heat exchangers-condensers cooled by seawater.
    Trueba A; García S; Otero FM
    Biofouling; 2014 Jan; 30(1):95-103. PubMed ID: 24266611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CUSUM chart method for continuous monitoring of antifouling treatment of tubular heat exchangers in open-loop cooling seawater systems.
    Boullosa-Falces D; García S; Sanz D; Trueba A; Gomez-Solaetxe MA
    Biofouling; 2020 Jan; 36(1):73-85. PubMed ID: 31985280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of electromagnetic fields on biofouling in a heat exchange system using seawater.
    Trueba A; García S; Otero FM; Vega LM; Madariaga E
    Biofouling; 2015; 31(1):19-26. PubMed ID: 25567299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.
    García S; Trueba A; Vega LM; Madariaga E
    Biofouling; 2016 Nov; 32(10):1185-1193. PubMed ID: 27744709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater.
    Trueba A; García S; Otero FM; Vega LM; Madariaga E
    Biofouling; 2015; 31(6):527-34. PubMed ID: 26222187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the activity of quaternary ammonium compounds in the mitigation of biofouling in heat exchangers-condensers cooled by seawater.
    Trueba A; Otero FM; González JA; Vega LM; García S
    Biofouling; 2013; 29(9):1139-51. PubMed ID: 24067104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimisation of biocide dose as a function of residual biocide in a heat exchanger pilot plant effluent.
    Eguía E; Trueba A; Girón A; Río-Calonge B; Otero F; Bielva C
    Biofouling; 2007; 23(3-4):231-47. PubMed ID: 17653933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of different antifouling treatments for seawater cooling systems.
    López-Galindo C; Casanueva JF; Nebot E
    Biofouling; 2010 Nov; 26(8):923-30. PubMed ID: 21038152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigation of marine biofouling on tubes of open rack vaporizers using electromagnetic fields.
    Trueba A; Vega LM; García S; Otero FM; Madariaga E
    Water Sci Technol; 2016; 73(5):1221-9. PubMed ID: 26942546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of calcium ions on the evolution of biofouling by Bacillus subtilis in plate heat exchangers simulating the heat pump system used with treated sewage in the 2008 Olympic Village.
    Tian L; Chen XD; Yang QP; Chen JC; Shi L; Li Q
    Colloids Surf B Biointerfaces; 2012 Jun; 94():309-16. PubMed ID: 22391321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biofouling of heat exchange tubes].
    Montero F; Pintado JL
    Microbiologia; 1994; 10(1-2):93-102. PubMed ID: 7946131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of interactions between the temperature field and biofouling in a synthetic treated sewage stream.
    Yang Q; Wilson DI; Chen X; Shi L
    Biofouling; 2013; 29(5):513-23. PubMed ID: 23668358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination.
    Yang HL; Lin JC; Huang C
    Water Res; 2009 Aug; 43(15):3777-86. PubMed ID: 19586651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-chemical biofouling control in heat exchangers and seawater piping systems using acoustic pulses generated by an electrical discharge.
    Brizzolara RA; Nordham DJ; Walch M; Lennen RM; Simmons R; Burnett E; Mazzola MS
    Biofouling; 2003 Feb; 19(1):19-35. PubMed ID: 14618686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel method for assessing the en route survivorship of biofouling organisms on various vessel types.
    Coutts AD; Taylor MD; Hewitt CL
    Mar Pollut Bull; 2007 Jan; 54(1):97-100. PubMed ID: 17112545
    [No Abstract]   [Full Text] [Related]  

  • 18. Development of an electrochemical antifouling system for seawater cooling pipelines of power plants using titanium.
    Wake H; Takahashi H; Takimoto T; Takayanagi H; Ozawa K; Kadoi H; Okochi M; Matsunaga T
    Biotechnol Bioeng; 2006 Oct; 95(3):468-73. PubMed ID: 16752370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial-intelligence-model to optimize biocide dosing in seawater-cooled industrial process applications considering environmental, technical, energetic, and economic aspects.
    García S; Boullosa-Falces D; Sanz DS; Trueba A; Gomez-Solaetxe MA
    Biofouling; 2024; 40(5-6):366-376. PubMed ID: 38855912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of fouling on the process performance of the thermal treatment of pig slurry using tubular heat exchangers.
    Cunault C; Burton CH; Pourcher AM
    J Environ Manage; 2013 Mar; 117():253-62. PubMed ID: 23376308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.